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Abstract—Accelerators for pose estimation have a wide range of 

application scenarios at the edge. However, the complexity and 

variability of the edge environment and the limited power 

consumption restrict the application and deployment of 

conventional devices such as GPUs at the edge. In response, this 

paper proposes a low-power bit-pose estimation accelerator 

architecture suitable for application in multiple scenarios, and 

this design supports the mapping of different pose estimation 

networks to accelerators. In addition, we also develop an 

accompanying operator library to support new pose estimation 

networks. In order to cope with the resource- and power-scarce 

scenarios at the edge, the number of operators in the library can 

be flexibly configured before accelerator deployment, and the 

power consumption can be dynamically adjusted by 

dynamically adjusting the operating frequency of the 

accelerators in real applications. Finally, we deployed the 

proposed architecture on Virtex UltraScale+ VU9P and tested it 

using PVNet as well as MobileNetV2. The experimental results 

show that the proposed architecture can achieve performance 

similar to that of current state-of-the-art dedicated accelerators 

with lower power consumption and greater versatility while 

ensuring real-time performance and accuracy. 

 

Index Terms—Pose Estimation, CNN, FPGA.  

I. INTRODUCTION 

Artificial Intelligence is a long sought after goal of 

mankind, and CNN as a way to achieve this goal[1] has been 

continuously improved and developed in recent years. New 

CNN architectures have been proposed by academia and 

industry to cope with the ever complex application scenarios, 

and CNNs have replaced most of the traditional algorithms in 

image processing by virtue of their high accuracy, 

adaptability and scalability. Pose estimation, as a branch of 

image processing, has also been influenced by CNN, such as: 

assisted driving[2], motion recognition[3], augmented 

reality[4], human-computer interaction[5], and other widely 

used fields of pose estimation have begun to replace the 

original mathematical algorithms with CNN. However, the 

premise of CNN high-precision results is the corresponding 

computational complexity, in order to achieve high-precision 

fast processing is bound to pay the corresponding price. This 

cost includes extremely high power consumption, a large 

number of computing units, high-frequency memory access, 

and so on. This makes how to achieve high efficiency and 

low power consumption to allow the deployment of attitude 

estimation networks at the edge an important research topic. 

In practical applications of pose estimation, it is crucial to 
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have the ability to perform accurate operations in complex 

and changing environments[6]. The complexity of the 

environment has led to the creation of many algorithms for 

different scenarios to meet the challenges of the pose 

estimation work, such as PVNet[7], which is good at dealing 

with occlusion situations, and MobileNetV2[8], a lightweight 

network. In this context, choosing a suitable vehicle for the 

bit-pose estimation network accelerator is crucial. Depending 

on their architectures, typical AI chips are now divided into 

three main categories[9]. The first one is a general-purpose 

AI chip optimised by hardware and software, such as GPU 

(Graphics Processing Unit), represented by NVIDIA, which 

has become the first choice for artificial neural network 

training due to its powerful data parallel processing 

capability and the high parallel demand of artificial neural 

networks[10]. However, when it comes to reasoning, GPUs 

are often difficult to deploy effectively at the edge due to 

their high power consumption. The second category is fully 

customised artificial intelligence chips such as ASIC 

(Application-specific Integrated Circuit), representative 

vendors are Google and Cambricon. ASIC chips can be 

customised and optimised at the hardware level to meet the 

needs of specific applications, with small size, low power 

consumption, high performance and low cost. The 

disadvantage of ASIC chips is that they cannot be 

dynamically configured, and there is no room for change 

once they are flowed on the chip, lacking the versatility and 

flexibility of GPU and FPGA chips. The third category is 

semi-customised AI chips such as FPGAs 

(Field-programmable Gate Array), with representative 

vendors such as Xilinx and Altera, which are mainly suitable 

for low-latency streaming computation-intensive tasks. 

FPGA chips have low power consumption, programmability 

and reconfigurability, allowing users to customise their 

designs and implement the latest neural network models. 

Neural network models. 

Current mainstream bit-posture estimation accelerators 

usually limit the acceleration target to a specific network, 

which is difficult to achieve ideal results in complex edge 

environments. In this paper, we propose a low-power 

bit-posture estimation accelerator for multi-scenarios, aiming 

to address the shortcomings of current mainstream 

bit-posture estimation accelerators in terms of single 

application scenarios and high power consumption. We 

choose PVNet and MobileNetV2 as the validation networks 

for the accelerator, with the former maintaining excellent 

performance when the detection target receives severe 

occlusion, and the latter being a lightweight network. To 

facilitate the deployment of the network, we also perform 

quantisation operations on the parameters, an approach that 

can significantly improve the inference speed while the 
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accuracy is only slightly affected. Finally, we validate on the 

LineMod dataset, where PVNet achieves 84.53% accuracy 

and MobileNetV2 achieves 78.42% accuracy. Our main 

contributions are as follows: 

1. By inputting a sequence of instructions to the controller 

to control the accelerator to perform the corresponding 

operations on the data, this control mode can be used to 

dynamically reconfigure the accelerator's operating network 

to cope with different operating scenarios by changing the 

instructions written in real time without changing the 

underlying FPGA configuration file. 

2. In the development session of the accelerator, in order to 

ensure hardware adaptability under different resource 

conditions. We use the SpinalHDL development language to 

enhance the flexible configuration of FPGA parameters, so 

that the user does not need to focus on the specific 

implementation details, and can change the types of operators 

in the arithmetic library according to the different networks 

being accelerated. This architecture allows the accelerator to 

minimise resource consumption to cope with resource 

constraints at the edge, and facilitates additional expansion of 

the arithmetic library at a later stage. 

3. The work intensity of the accelerator is controlled by 

dynamically adjusting the operating frequency of the system. 

This mode allows the edge device to dynamically adjust the 

operating frequency according to the different real-time 

requirements in different scenarios to achieve the purpose of 

reducing power consumption. 

The rest of the paper is organised as follows: section II 

describes the related work. Section III analyses the 

bit-position estimation network and its mapping at the 

accelerator Section IV describes the overall architecture of 

the system, the development of the operator library, and the 

optimisations performed on the edge side. Section V presents 

the hardware implementation and experimental results. 

Section VI concludes. 

II. RELATED WORK 

A complete pose estimation process is roughly divided into 

four steps: feature extraction, keypoint detection, keypoint 

matching and correlation, and pose estimation. Early feature 

extraction algorithms usually relied on classical algorithms 

such as SIFT[11] (Scale Invariant Feature Transform), 

SURF[12] (Speeded-Up Robust Features), and HOG[13] 

(Histogram of Orientation Gradients). These methods capture 

the important information in an image by means of features 

that are statistically derived manually. In the era of deep 

learning, CNNs have greatly improved the efficiency and 

accuracy of feature extraction by virtue of their ability to 

automatically learn hierarchical features from images. 

Traditional keypoint detection methods include Harris corner 

detection[14], FAST[15] (Features from Accelerated 

Segment Test), and so on. These methods rely on local 

changes in the image to detect keypoints. CNN can directly 

output the location heat map of keypoints through network 

training, which greatly improves the accuracy and robustness 

of detection. The traditional keypoint matching work is 

generally relied on violent matching, KD tree[16] and other 

ways to complete, CNN's powerful learning ability is far 

more than the traditional algorithms in this work efficiency. 

Only in the position estimation after obtaining the key point 

features, such as PnP[17] (Perspective-n-Point) and ICP[18] 

(Iterative Closest Point), the traditional algorithms can be 

temporarily higher than the deep learning algorithms in terms 

of algorithm complexity and accuracy. Based on this status 

quo, the current pose estimation network generally only 

contains the work related to feature point extraction and 

matching, such as PVNet algorithm's object block diagram is 

derived from the PnP algorithm after the network derives the 

feature points. It is also due to this work characteristic that the 

networks of pose estimation algorithms generally do not have 

a fully connected layer as in the case of object classification 

networks. The absence of a fully connected layer consumes a 

lot of computational resources if deployed at the edge, and 

makes attitude estimation networks more suitable for 

deployment at the edge using accelerators. 

A number of accelerators have been proposed for 

bit-position estimation, A. Sohrabizadeh et al[19]. 

constructed a set of bit-position estimation network with 

MobileNetV2 as the backbone on FPGA and optimised the 

system end-to-end. This strategy undoubtedly strengthens the 

precision and accuracy of the computation, but at the same 

time it inevitably increases the dependence of the edge 

system on high-performance servers and the increase of the 

power consumption of the whole system.Xiang Wang et 

al[20]. proposed a MobileNetV2+LightPose processing 

method based on FPGA. This strategy achieves high frame 

rate bit-pose estimation through extreme compression of the 

neural network, and at the same time, the compression of the 

neural network makes its AP only 0.546, which is difficult to 

meet the requirements of practical applications.Fan H et 

al[21]. proposed a MobileNetV2+SSDLite-based approach 

to reduce the number of network parameters and practiced 

with the ZC102 platform, and the design is indeed effective! 

This design does effectively reduce the computational 

pressure of the accelerator, but the partial quantisation still 

makes the performance of this scheme unsatisfactory in terms 

of frame rate. While several previous acceleration schemes 

are limited to accelerating a fixed network, VICTORIA 

HEEKYUNG KIM et al[22]. proposed a dynamically 

reconfigurable CNN accelerator that can change the network 

by replacing the internal configuration file of the FPGA, 

which undoubtedly improves the flexibility of the system and 

allows the edge device to change the neural network at any 

time to cope with different task scenarios. However, the 

dynamic reconfiguration method by replacing the BIT file 

requires each set of networks to generate a corresponding set 

of configuration files in advance, which is undoubtedly 

complicated in practical applications. 

It is a challenge to efficiently accelerate the pose 

estimation network to achieve real-time frame rates and 

lower power consumption to cope with complex pose 

estimation scenarios in real applications. A common 

approach is to quantise the network to reduce the number of 

parameters and computational complexity of the network. 

For example, Miyama M et al[23]. in their design of an 

accelerator for semantic segmentation accelerators quantised 

the network parameters in 3-bit quantisation, which 

significantly improves the inference efficiency of the 

network, but at the same time the impact on the network 

accuracy makes it difficult to be applied in real-world 

scenarios where accuracy is required. It is known from 
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Vanhoucke et al[24]. that 8-bit quantisation can significantly 

speed up the inference process, and Gysel et al[25]. show that 

data with 8-bit fixed-point representation is basically 

comparable to data with 32-bit floating-point representation 

in terms of accuracy. The approach taken in this work is the 

8-bits quantisation approach, but unlike the work [20] in 

where the network was trained quantitatively, we chose to 

quantise the parameters of the trained network, an approach 

that is more flexible and more conducive to shortening the 

deployment time of the bit-pose estimation network in 

practical applications. Another commonly used model 

compression method is to prune or compress the network 

itself, which can effectively reduce the amount of 

computation during network inference. This approach is 

mainly applied to the fully-connected layer of the CNN, and 

the pruning operation on the convolutional layer is often not 

effective, and since the pose estimation network generally 

does not have a fully-connected layer, this technique is not 

used in this work.。 

In this paper, a low-power bit-pose estimation accelerator 

for multi-scenario applications is proposed. and is deployed 

using the Virtex UltraScale+ VU9P FPGA platform. In the 

accelerator development phase, we use the SpinalHDL 

development language, a choice that greatly simplifies the 

development process and allows for significant code 

flexibility. For model compression, we chose 8-bit 

quantisation, which significantly reduces the computational 

effort with little impact on accuracy. In order to enable 

dynamic switching of multiple networks on our accelerator, 

our architecture uses instruction-controlled data flow to 

compute in individual operators, which enables any network 

supported by the operator library to be deployed on the 

accelerator without changes to the accelerator itself. This 

agile design not only enables accelerators to make network 

changes on a real-world basis at the edge where scenarios are 

complex, but also shortens the workflow from the new 

network to the accelerator deployment. 

 

III. NETWORK MODEL ANALYSIS 

In this work, two networks, PVNet and MobileNetV2, are 

used to validate the functionality and agility of the accelerator. 

As a pose estimation network, PVNet maintains good 

performance even when the target is heavily truncated or 

interfered with.7 The main body of the network is divided 

into four parts: an initial convolutional layer for extracting 

details in the space, a rich feature information captured 

through the ResNet18 backbone network, a directional map 

convolutional layer to obtain directional information at key 

points, and a confidence convolutional layer to obtain the 

heat of each key point. Power map. In Table 1, we analyse the 

computational resource distribution of PVNet.MobileNetV2 

is a lightweight network, where we remove the 

fully-connected layer behind the network and introduce a 

pixel voting mechanism to make it applicable to pose 

estimation.The main feature of MobileNetV2 is the inverted 

residual structure, which is a bottleneck layer that maps the 

input high-dimensional features into a lowdimensional space 

and then then recovered to high dimensions through an 

extension layer. This design significantly reduces the 

computational effort and preserves feature information 

through jump connections. In Table 2 we analyse the 

computational resource distribution of MobileNetV2. By 

analysing the ratio of computational resources of the two 

bit-pose estimation networks, it can be seen that the main 

computational resources of the network are allocated in the 

feature extraction and feature enhancement phases, in which 

convolutional computation is dominant, for this reason, this 

work has made data reuse and optimization strategies for 

high-channel convolutional computation of the accelerator, 

which will be mentioned in the following sections. After the 

network computation, the feature points are converted into 

the pose block diagram of the object by the PnP algorithm, 

which is outside the scope of this work, so the final output of 

the accelerator is the feature point diagram. 

Table.1 PVNet network capacity 
B L INPUT SIZE operate FLOPs（M） 

#1 1 320×320×1 CONV 1006.08 

2 160x160x64 MAXPOOL 0 

3 80x80x64 residual block 147.456 

4 80x80x64 residual block 147.456 

5 40x40x128 residual block 36.864 

6 20x20x256 residual block 9.216 

#2 7 10x10x512 CONV,DownSimple 188.743 

8 10x10x256 CONV,DownSimple 47.185 

9 10x10x128 CONV,DownSimple 9,437 

#3 10 10x10x64 CONV,UpSimple 6.968 

#4 11 10x10x64 CONV,UpSimple 3.484 

Total 1602.889 

Table.2 MobileNetV2 network capacity 
B L INPUT SIZE operate FLOPs（M） 

#1 1 320x320x1 CONV 294.912 

#2 2 160x160x32 Inverted Residual 442.368 

3 160x160x16 Inverted Residual 106.168 

4 80x80x24 Inverted Residual 23.311 

5 80x80x24 Inverted Residual 11.640 

6 40x40x32 Inverted Residual 7.258 

7 40x40x32 Inverted Residual 7.258 

8 40x40x32 Inverted Residual 7.368 

9 20x20x64 Inverted Residual 7.147 

10 20x20x64 Inverted Residual 7.147 

11 20x20x64 Inverted Residual 7.147 

12 20x20x64 Inverted Residual 10.721 

13 20x20x96 Inverted Residual 16.108 

14 20x20x96 Inverted Residual 16.108 

15 20x20x96 Inverted Residual 11.289 

16 10x10x160 Inverted Residual 10.373 

17 10x10x160 Inverted Residual 10.373 

18 10x10x160 Inverted Residual 16.065 

19 10x10x320 CONV 41.472 

#3 20 10x10x1280 CONV,UpSimple 59.904 

21 20x20x256 CONV,UpSimple 47.185 

22 40x40x128 CONV 18.874 

#4 23 40x40x64 CONV,UpSimple 6.968 

#5 24 40x40x64 CONV,UpSimple 3.484 

Total 1297.308 

 

IV. ACCELERATOR DESIGN 

A. Overall structure 

In order to enable networks to dynamically switch among 

accelerators in real time, we adopt a collaborative 

architecture, and the overall system architecture is shown in 

Fig. 1. The compiler is responsible for generating the 

corresponding control instructions according to the network 

to be accelerated and does not participate in the acceleration 
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process of the network. The host computer is responsible for 

collaborating with the accelerator, sending the instructions, 

weights, and data required by the accelerator to the 

accelerator, and reading the data in the DDR after receiving 

the completion signal from the accelerator and carrying out 

the corresponding post-processing, such as the PnP 

algorithm, etc. All the data control inside the accelerator is 

carried out by the DDR. The data control inside the 

accelerator is all taken care of by the instruction decoder, 

while the instructions controlling the accelerator to perform 

the computation are generated by the compiler before the 

accelerator is deployed, and then written into the instruction 

registers of the accelerator by the host computer through the 

AXI-Lite bus. Similarly, the image data required for the 

accelerator computation and large data such as weights are 

written by the host computer via the AXI bus to the DDR to 

be processed. When the decoder detects the start instruction 

or the completion signal of the previous instruction in the 

instruction register, it starts to decode the next instruction and 

calls the corresponding module in the arithmetic library to 

complete the corresponding calculations. If the next 

instruction is the completion instruction, the accelerator 

sends a completion interrupt signal to the host computer, 

which is a complete acceleration process. 

 
Fig.1 Overall System Architecture 

In this work, the host computer can also achieve dynamic 

clock output by accessing the DRP through configuration 

registers using the AXI-Lite interface, with the control 

module shown in Figure 2. This design allows the 

accelerators deployed at the edge to increase the operating 

frequency in real time according to the intensity of the work 

to achieve higher real-time performance, and also reduce the 

operating frequency to reduce power consumption. In 

practical tests, under the premise of meeting the timing 

convergence, this accelerator module supports an operating 

frequency of up to 225MHz, and the power consumption 

under different operating intensities is discussed in detail in 

Section V. 

 
Fig.2 Clock Control Module 

B. Instruction set design 

In this work, the accelerator works by controlling the data 

flow through the decoder and the size and storage address of 

the data to be computed and the type of computation to be 

performed are stored in each instruction. In this architecture, 

the design of the instruction set is particularly important. The 

use of a complex instruction set will increase the user's 

control over the details of the accelerator's operation, but it 

will also increase the complexity of the decoding and will not 

be conducive to subsequent development. In this design, our 

instruction format is shown in Figure 3. The length of a single 

instruction is 40 bits, where 38 and 39 bits are instruction 

categories (green) and 0 to 37 bits are instruction details (blue 

and orange). The instructions are classified based on the 

category of the instruction, and the instructions in this work 

are classified into four categories: state control, DMA 

read/write, parameter setting, and operator selection. After 

the decoder recognises the category part of the instruction, it 

performs the corresponding work according to the different 

values. The state control instructions mainly include the start 

and stop of the accelerator, the start of the operator after the 

data loading is finished, and the status return instruction 

which is used by the host computer to check the current 

progress of the accelerator.The first 2bits of the DMA 

read/write instructions are used to differentiate between 

read/write functions and read/write channels, because the 

inputs of many operators in the accelerator consist of two 

inputs (e.g., CONV), and so they contain two write 

instructions and four read instructions. instructions. The first 

bit of the operator type selection instruction is used to 

distinguish whether the selection is for a CONV operator or 

an operator in Shape. This instruction is used to configure the 

parameters required for the operator to be run, and the first 4 

bits of this instruction are used to activate the corresponding 

registers to receive the parameters. Some of the parameter 

setting instructions are shown in Fig. 3, such as the 

convolution input and output sizes, the pre-convolution 

Padding parameter settings, and the settings of the operator 

parameters in Shape. When designing the instructions, we 

reserve some expansion space for each type of instruction for 

subsequent development of new operators and other work. 

 
Fig.3 Instruction Format Design 

C. Arithmetic library development 

In this work, the operators in the operator library are 

mainly classified into two categories based on their functions 

in the network: the CONV module and the Shape module. 

The CONV module is responsible for the convolutional 

computation in the network. During the design of the 

accelerator, we integrate the data preparation module before 

convolution and the BN (batch normalisation) and activation 
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operations after convolution in the CONV module, which 

greatly reduces the bandwidth pressure and time loss caused 

by the data mobilisation between the DDR and the 

accelerator. The Shape module contains a number of network 

operators such as MaxPool, Concat, MeanPool, etc. to 

support network diversity. 

Based on the network analysis in Section III, it can be 

learnt that the convolutional computation is the most 

computationally intensive and time consuming part of the 

bit-posture estimation network. In the conventional 

computational flow, in the case that the input size and output 

size of the feature map are equal, the convolutional 

computation flow is shown in the computational flow 1, and 

the determinants of the time complexity consumed by the 

convolutional computation are the number of convolutional 

kernels, the size of the convolutional kernels, the image size, 

and the image channel, and the size of the convolutional 

kernels is generally 2 × 2 or 3 × 3 in the conventional 

convolutional network, and in this work, this part is first 

parallelised This part is first parallelised in this work by 

setting Kh×Kw multipliers to unroll the loop part so that the 

computation can be completed in one clock cycle in the 

accelerator's computation flow. In addition to parallelisation 

by unfolding the convolution kernel, parallelisation can also 

be achieved by unfolding the input channel loops. In addition, 

the present work can also set up more than one of the above 

operations at the same time to achieve multiple convolutional 

kernels at the same time to parallelise the computation of the 

output channel. The efficiency of parallel processing for 

input and output channels depends on the amount of 

computational resources, and this work parameterises the 

hardware code of this design so that the accelerator can set 

the degree of parallelism according to the different 

computational resources of the edge device in practical 

applications. The computational flow II shows the 

computational complexity after parallelisation. 

calculation process 1 ：Conventional Convolution Process 
f o r  N  t o  Number  o f  K e rne l  

  f o r  H  t o  H e igh t  o f  Inpu t，W t o  Wid t h  o f  Inpu t  

f o r  C  t o  Channe l  o f  Inpu t  

  f o r  K h  t o  H e igh t  o f  K e rne l，K w t o  W i d t h  o f  K e rne l  

     o u t pu t [n ] [h ] [w ] += Input [ c ] [h+kh ] [w +kw]* Ke rne l [n ] [ c ] [ kh ] [ kw] 

 

calculation process 2 ：Accelerating the convolution process 

f o r  N  t o  Number  o f  K e rne l  /  P a r a l l e l i s m  o f  K e rne l  

  f o r  H  t o  H e igh t  o f  Inpu t，W t o  Wid t h  o f  Inpu t  

f o r  C  t o  Channe l  o f  Inpu t  /  P a r a l l e l i sm  o f  Channe l  

  o u t pu t [n ] [h ] [w ] + =Input [ c ] [h+kh ] [ w+k w]* Ke rne l [n ] [ c ] [ kh ] [ kw] 

Fig. 4 shows the convolutional processing flow inside the 

re-accelerator, where the size of the convolutional kernel is 

assumed to be 3 × 3. In order to parallelise the convolutional 

kernel, we add two row buffers in the data collation stage, 

which are used to generate three rows of feature data for 

computation. After the data collation is completed, the 

feature points of each row start flowing into the 

computational units for multiplication computation.The 

number of computational units depends on the size of the 

convolutional kernel as well as the parallelism of the input 

and output channels. In the figure it is assumed that the input 

channel parallelism and output channel parallelism is 3. After 

the completion of the multiplication operation, the obtained 9 

pixel points and the results of each channel are summed up 

through the addition tree to get the single channel result of a 

pixel in the output result. 

 
Fig.4 Convolutional Processing Flow 

When the on-chip resources are sufficient, the output of the 

convolution can be derived by repeating the above operation. 

However, not all edge-side chips have sufficient resources, 

especially when the number of parameters of some 

convolution operations is large, the computational resources 

consumed to perform one convolution are too much, in order 

to cope with this situation, we can also lighten the 

convolution processing. The process of distributed 

convolution is shown in Fig. 5, which divides the image and 

convolution kernel into two pieces by channel, and performs 

two convolution and quantisation operations on the two parts 

to obtain the corresponding results. After that, the previously 

obtained results are summed and quantised by channel to 

obtain the full results of this convolution. This calculation 

method is to divide the original one convolution instruction 

into two convolution instructions and one summing 

instruction. Practical tests show that the distributed 

convolution process consumes about 1.05 times as much time 

as a normal convolution operation, while the input image and 

the number of parameters remain unchanged, and most of the 

extra time consumed is the time spent on moving data 

between the DDR and the FPGA. Distributed convolutional 

computation allows resource-scarce edge chips to perform 

convolutional computation with high number of parameters 

at a small cost of time while maintaining computational 

accuracy. 

 
Fig.5 Flow of distributed convolution 

The Shape module is responsible for providing support for 

operators other than convolutional computation in the 

network. In this work, the size of the operators in the Shape 

module is not fixed, and their number can be increased or 

decreased depending on the network to be accelerated. This 

approach allows the accelerator to support a wider variety of 

networks, and also reduces unnecessary operators according 

to the network to be accelerated, thus reducing unnecessary 

resource usage and power consumption. In this work, the 

operator library contains commonly used network operators 

such as MaxPool, Concat, Add, Upsampling, Mul and 

MeanPool. The hardware implementations of these classical 

operators have been described in many previous works and 

will not be repeated in this paper. In addition to these 

classical operators, in order to support newer network 

structures, we have also developed the HWD operator, which 

achieves better results in image processing algorithms 
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compared to other traditional downsampling 

algorithms[26].The hardware implementation of the HWD 

operator is shown in Fig. 6. 

 
Fig.6 HWD operator architecture 

V. RESULTS 

A. Data sets and evaluation indicators 

We chose the LineMod dataset as our test dataset during 

the functional validation of the pose estimation accelerator. 

This is a standard 6D object pose estimation dataset 

containing multiple objects, viewpoints, and occlusion 

situations, and this dataset is more conducive to verifying the 

ability of our accelerator to work in complex situations. For 

accuracy evaluation, we choose ADD (Average Distance of 

Model Points) as the judging metric. In the usual judging 

criteria, the ADD value of the network estimation result is 

less than or equal to 10% is regarded as the correct estimation 

of the object's pose, and this criterion is also adopted for our 

accuracy calculation. 

In this work, the quantised PVNet and MobileNetV2 

network accuracies are shown in Table 3.PVNet, due to its 

excellent performance in complex situations such as object 

occlusion, achieved 84.53% accuracy in all categories of the 

accuracy test, and 95.20% accuracy in the category of 

Eggbox, and MobileNetV2, due to its MobileNetV2 is 

slightly less accurate than PVNet due to its lightweight nature, 

achieving 78.42% accuracy. In addition, we also list the 

unquantised PVNet and MobileNetV2 network accuracies as 

a comparison, and it can be seen that the 8bit quantisation 

strategy adopted in this work has little effect on the accuracy. 

Table.3 PVNet and MobileNetV2 network accuracy 

Module Data Type GFLOPS（G） AP 

PVNet Float-32 1.602 0.862 

MobileNetV2 Float-32 1.297 0.809 

PVNet Int-8 -- 0.845 

MobileNetV2 Int-8 -- 0.784 

The results of the PVNet as well as MobileNetV2 

networks are shown in Fig. 7 and Fig. 8. Since the present 

accelerator does not include the PnP object pose frame 

generation aspect of object pose estimation, the graphs are 

shown as a visualisation of the keypoints of the network 

output. 

 
Fig.7 PVNet Network Attitude Estimation Effect 

 
Fig.8 MobileNetV2 Network Attitude Estimation Effect 

B. Resource usage and power consumption 

Table 4 shows the resource consumption of our accelerator 

when deployed on the Virtex UltraScale+ VU9P platform. 

Compared to the work of [20], which is a dedicated 

accelerator, our LUTs and FFs consume less resources and 

achieve more flexible acceleration. Moreover, this data is the 

performance of the Shape module with all supported 

operators fully loaded, and in the actual deployment, the 

number of operators in the module can be deleted or reduced 

according to the different accelerated networks to reduce the 

resource consumption. The accelerator also supports 

real-time dynamic adjustment of the operating frequency to 

control the power consumption of the accelerator, the power 

consumption data under different operating frequencies are 

shown in Table 5. 

Table.4 Accelerator resource consumption 

Resource LUTs FFs BRAMs DSPs 

Our Work 107954 157763 563.5 1033 

[20] 131187 209200 348.5 642 

Table.5 Power consumption of accelerators at different 

operating frequencies 

Frequency（hz） 200M 125M 50M 

Total Power（W） 11.585 9.706 7.997 

C. Comparison of work 

In this work, we calculate the FPS by measuring the 

difference between when the host computer sends the start 

signal to the accelerator and when the host computer receives 

the end signal from the accelerator.Most of the work 

calculates the FPS by measuring the difference in time 

between when the accelerator reads the initial data from the 

DDR and when it writes the result back to the DDR.For the 

same work, our way is lower in terms of the data compared to 

this way. , but our measurement is more in line with the 

performance effect when actually deployed. Table 6 shows 

the comparison of our work with other work. Compared to 

other existing state-of-the-art work, our flexible architecture 

outperforms [27] in terms of DSP utilisation, and our work 

meets the real-time requirements and outperforms [28] in 

terms of FPS. Compared to [20], a lightweight dedicated 

bit-pose estimation accelerator, our accelerator has some 

disadvantages in terms of frame rate and power consumption, 

but our architecture is more suitable for real-time scenarios 

with complex environments and higher accuracy. 

Table.6 job comparison 

 [28 ]  [29 ]  [20 ]  Our  

wo rk  

Our  wo rk  

P la t f o rm A r r i a1 0

So C  

ZC7 0 6 XCK 3 2 5 T VU9 P  VU9 P  
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Net wo rk  M o b i l e N

e t  V 2  
M o b i l e N e t  

V 2 + S S D L i t e  

M o b i l e N e t V

2 +  

L i g h t P o s e  

P VNET  M o b i l e N e t V 2

+  P i x e l w i s e  

V o t i n g  
Freq  

(MH z )  
150 100  188  200  200  

D S P  

U t i l i z a t i o

n  

1278 728 642 1033 1033 

FPS  226 .2  64 .8  411 .6  98 .36  130 .24  

Power (

W) 

- -  9 .9  5 .03  11 .58

5  

11 .585  

 

VI. SUMMARY 

We propose a low-power bit-posture estimation 

accelerator for multi-scenario applications and deploy it on a 

Virtex UltraScale+ VU9P FPGA. The accelerator achieves 

excellent power performance with guaranteed accuracy and 

real-time performance, allowing it to be used for real-time 

efficient pose estimation in complex environments. 
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