
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-04, April 2025

 59 www.ijerm.com

Abstract—Accelerators for pose estimation have a wide range of

application scenarios at the edge. However, the complexity and

variability of the edge environment and the limited power

consumption restrict the application and deployment of

conventional devices such as GPUs at the edge. In response, this

paper proposes a low-power bit-pose estimation accelerator

architecture suitable for application in multiple scenarios, and

this design supports the mapping of different pose estimation

networks to accelerators. In addition, we also develop an

accompanying operator library to support new pose estimation

networks. In order to cope with the resource- and power-scarce

scenarios at the edge, the number of operators in the library can

be flexibly configured before accelerator deployment, and the

power consumption can be dynamically adjusted by

dynamically adjusting the operating frequency of the

accelerators in real applications. Finally, we deployed the

proposed architecture on Virtex UltraScale+ VU9P and tested it

using PVNet as well as MobileNetV2. The experimental results

show that the proposed architecture can achieve performance

similar to that of current state-of-the-art dedicated accelerators

with lower power consumption and greater versatility while

ensuring real-time performance and accuracy.

Index Terms—Pose Estimation, CNN, FPGA.

I. INTRODUCTION

Artificial Intelligence is a long sought after goal of

mankind, and CNN as a way to achieve this goal[1] has been

continuously improved and developed in recent years. New

CNN architectures have been proposed by academia and

industry to cope with the ever complex application scenarios,

and CNNs have replaced most of the traditional algorithms in

image processing by virtue of their high accuracy,

adaptability and scalability. Pose estimation, as a branch of

image processing, has also been influenced by CNN, such as:

assisted driving[2], motion recognition[3], augmented

reality[4], human-computer interaction[5], and other widely

used fields of pose estimation have begun to replace the

original mathematical algorithms with CNN. However, the

premise of CNN high-precision results is the corresponding

computational complexity, in order to achieve high-precision

fast processing is bound to pay the corresponding price. This

cost includes extremely high power consumption, a large

number of computing units, high-frequency memory access,

and so on. This makes how to achieve high efficiency and

low power consumption to allow the deployment of attitude

estimation networks at the edge an important research topic.

In practical applications of pose estimation, it is crucial to

Manuscript received April 10, 2025

 Ze Jia, School of computer science and technology, Tiangong

University, Tianjin, China.

have the ability to perform accurate operations in complex

and changing environments[6]. The complexity of the

environment has led to the creation of many algorithms for

different scenarios to meet the challenges of the pose

estimation work, such as PVNet[7], which is good at dealing

with occlusion situations, and MobileNetV2[8], a lightweight

network. In this context, choosing a suitable vehicle for the

bit-pose estimation network accelerator is crucial. Depending

on their architectures, typical AI chips are now divided into

three main categories[9]. The first one is a general-purpose

AI chip optimised by hardware and software, such as GPU

(Graphics Processing Unit), represented by NVIDIA, which

has become the first choice for artificial neural network

training due to its powerful data parallel processing

capability and the high parallel demand of artificial neural

networks[10]. However, when it comes to reasoning, GPUs

are often difficult to deploy effectively at the edge due to

their high power consumption. The second category is fully

customised artificial intelligence chips such as ASIC

(Application-specific Integrated Circuit), representative

vendors are Google and Cambricon. ASIC chips can be

customised and optimised at the hardware level to meet the

needs of specific applications, with small size, low power

consumption, high performance and low cost. The

disadvantage of ASIC chips is that they cannot be

dynamically configured, and there is no room for change

once they are flowed on the chip, lacking the versatility and

flexibility of GPU and FPGA chips. The third category is

semi-customised AI chips such as FPGAs

(Field-programmable Gate Array), with representative

vendors such as Xilinx and Altera, which are mainly suitable

for low-latency streaming computation-intensive tasks.

FPGA chips have low power consumption, programmability

and reconfigurability, allowing users to customise their

designs and implement the latest neural network models.

Neural network models.

Current mainstream bit-posture estimation accelerators

usually limit the acceleration target to a specific network,

which is difficult to achieve ideal results in complex edge

environments. In this paper, we propose a low-power

bit-posture estimation accelerator for multi-scenarios, aiming

to address the shortcomings of current mainstream

bit-posture estimation accelerators in terms of single

application scenarios and high power consumption. We

choose PVNet and MobileNetV2 as the validation networks

for the accelerator, with the former maintaining excellent

performance when the detection target receives severe

occlusion, and the latter being a lightweight network. To

facilitate the deployment of the network, we also perform

quantisation operations on the parameters, an approach that

can significantly improve the inference speed while the

Low Power Pose Estimation Accelerator for Multiple

Scenarios

Ze Jia

http://www.ijerm.com/

Low Power Pose Estimation Accelerator for Multiple Scenarios

 60 www.ijerm.com

accuracy is only slightly affected. Finally, we validate on the

LineMod dataset, where PVNet achieves 84.53% accuracy

and MobileNetV2 achieves 78.42% accuracy. Our main

contributions are as follows:

1. By inputting a sequence of instructions to the controller

to control the accelerator to perform the corresponding

operations on the data, this control mode can be used to

dynamically reconfigure the accelerator's operating network

to cope with different operating scenarios by changing the

instructions written in real time without changing the

underlying FPGA configuration file.

2. In the development session of the accelerator, in order to

ensure hardware adaptability under different resource

conditions. We use the SpinalHDL development language to

enhance the flexible configuration of FPGA parameters, so

that the user does not need to focus on the specific

implementation details, and can change the types of operators

in the arithmetic library according to the different networks

being accelerated. This architecture allows the accelerator to

minimise resource consumption to cope with resource

constraints at the edge, and facilitates additional expansion of

the arithmetic library at a later stage.

3. The work intensity of the accelerator is controlled by

dynamically adjusting the operating frequency of the system.

This mode allows the edge device to dynamically adjust the

operating frequency according to the different real-time

requirements in different scenarios to achieve the purpose of

reducing power consumption.

The rest of the paper is organised as follows: section II

describes the related work. Section III analyses the

bit-position estimation network and its mapping at the

accelerator Section IV describes the overall architecture of

the system, the development of the operator library, and the

optimisations performed on the edge side. Section V presents

the hardware implementation and experimental results.

Section VI concludes.

II. RELATED WORK

A complete pose estimation process is roughly divided into

four steps: feature extraction, keypoint detection, keypoint

matching and correlation, and pose estimation. Early feature

extraction algorithms usually relied on classical algorithms

such as SIFT[11] (Scale Invariant Feature Transform),

SURF[12] (Speeded-Up Robust Features), and HOG[13]

(Histogram of Orientation Gradients). These methods capture

the important information in an image by means of features

that are statistically derived manually. In the era of deep

learning, CNNs have greatly improved the efficiency and

accuracy of feature extraction by virtue of their ability to

automatically learn hierarchical features from images.

Traditional keypoint detection methods include Harris corner

detection[14], FAST[15] (Features from Accelerated

Segment Test), and so on. These methods rely on local

changes in the image to detect keypoints. CNN can directly

output the location heat map of keypoints through network

training, which greatly improves the accuracy and robustness

of detection. The traditional keypoint matching work is

generally relied on violent matching, KD tree[16] and other

ways to complete, CNN's powerful learning ability is far

more than the traditional algorithms in this work efficiency.

Only in the position estimation after obtaining the key point

features, such as PnP[17] (Perspective-n-Point) and ICP[18]

(Iterative Closest Point), the traditional algorithms can be

temporarily higher than the deep learning algorithms in terms

of algorithm complexity and accuracy. Based on this status

quo, the current pose estimation network generally only

contains the work related to feature point extraction and

matching, such as PVNet algorithm's object block diagram is

derived from the PnP algorithm after the network derives the

feature points. It is also due to this work characteristic that the

networks of pose estimation algorithms generally do not have

a fully connected layer as in the case of object classification

networks. The absence of a fully connected layer consumes a

lot of computational resources if deployed at the edge, and

makes attitude estimation networks more suitable for

deployment at the edge using accelerators.

A number of accelerators have been proposed for

bit-position estimation, A. Sohrabizadeh et al[19].

constructed a set of bit-position estimation network with

MobileNetV2 as the backbone on FPGA and optimised the

system end-to-end. This strategy undoubtedly strengthens the

precision and accuracy of the computation, but at the same

time it inevitably increases the dependence of the edge

system on high-performance servers and the increase of the

power consumption of the whole system.Xiang Wang et

al[20]. proposed a MobileNetV2+LightPose processing

method based on FPGA. This strategy achieves high frame

rate bit-pose estimation through extreme compression of the

neural network, and at the same time, the compression of the

neural network makes its AP only 0.546, which is difficult to

meet the requirements of practical applications.Fan H et

al[21]. proposed a MobileNetV2+SSDLite-based approach

to reduce the number of network parameters and practiced

with the ZC102 platform, and the design is indeed effective!

This design does effectively reduce the computational

pressure of the accelerator, but the partial quantisation still

makes the performance of this scheme unsatisfactory in terms

of frame rate. While several previous acceleration schemes

are limited to accelerating a fixed network, VICTORIA

HEEKYUNG KIM et al[22]. proposed a dynamically

reconfigurable CNN accelerator that can change the network

by replacing the internal configuration file of the FPGA,

which undoubtedly improves the flexibility of the system and

allows the edge device to change the neural network at any

time to cope with different task scenarios. However, the

dynamic reconfiguration method by replacing the BIT file

requires each set of networks to generate a corresponding set

of configuration files in advance, which is undoubtedly

complicated in practical applications.

It is a challenge to efficiently accelerate the pose

estimation network to achieve real-time frame rates and

lower power consumption to cope with complex pose

estimation scenarios in real applications. A common

approach is to quantise the network to reduce the number of

parameters and computational complexity of the network.

For example, Miyama M et al[23]. in their design of an

accelerator for semantic segmentation accelerators quantised

the network parameters in 3-bit quantisation, which

significantly improves the inference efficiency of the

network, but at the same time the impact on the network

accuracy makes it difficult to be applied in real-world

scenarios where accuracy is required. It is known from

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-04, April 2025

 61 www.ijerm.com

Vanhoucke et al[24]. that 8-bit quantisation can significantly

speed up the inference process, and Gysel et al[25]. show that

data with 8-bit fixed-point representation is basically

comparable to data with 32-bit floating-point representation

in terms of accuracy. The approach taken in this work is the

8-bits quantisation approach, but unlike the work [20] in

where the network was trained quantitatively, we chose to

quantise the parameters of the trained network, an approach

that is more flexible and more conducive to shortening the

deployment time of the bit-pose estimation network in

practical applications. Another commonly used model

compression method is to prune or compress the network

itself, which can effectively reduce the amount of

computation during network inference. This approach is

mainly applied to the fully-connected layer of the CNN, and

the pruning operation on the convolutional layer is often not

effective, and since the pose estimation network generally

does not have a fully-connected layer, this technique is not

used in this work.。

In this paper, a low-power bit-pose estimation accelerator

for multi-scenario applications is proposed. and is deployed

using the Virtex UltraScale+ VU9P FPGA platform. In the

accelerator development phase, we use the SpinalHDL

development language, a choice that greatly simplifies the

development process and allows for significant code

flexibility. For model compression, we chose 8-bit

quantisation, which significantly reduces the computational

effort with little impact on accuracy. In order to enable

dynamic switching of multiple networks on our accelerator,

our architecture uses instruction-controlled data flow to

compute in individual operators, which enables any network

supported by the operator library to be deployed on the

accelerator without changes to the accelerator itself. This

agile design not only enables accelerators to make network

changes on a real-world basis at the edge where scenarios are

complex, but also shortens the workflow from the new

network to the accelerator deployment.

III. NETWORK MODEL ANALYSIS

In this work, two networks, PVNet and MobileNetV2, are

used to validate the functionality and agility of the accelerator.

As a pose estimation network, PVNet maintains good

performance even when the target is heavily truncated or

interfered with.7 The main body of the network is divided

into four parts: an initial convolutional layer for extracting

details in the space, a rich feature information captured

through the ResNet18 backbone network, a directional map

convolutional layer to obtain directional information at key

points, and a confidence convolutional layer to obtain the

heat of each key point. Power map. In Table 1, we analyse the

computational resource distribution of PVNet.MobileNetV2

is a lightweight network, where we remove the

fully-connected layer behind the network and introduce a

pixel voting mechanism to make it applicable to pose

estimation.The main feature of MobileNetV2 is the inverted

residual structure, which is a bottleneck layer that maps the

input high-dimensional features into a lowdimensional space

and then then recovered to high dimensions through an

extension layer. This design significantly reduces the

computational effort and preserves feature information

through jump connections. In Table 2 we analyse the

computational resource distribution of MobileNetV2. By

analysing the ratio of computational resources of the two

bit-pose estimation networks, it can be seen that the main

computational resources of the network are allocated in the

feature extraction and feature enhancement phases, in which

convolutional computation is dominant, for this reason, this

work has made data reuse and optimization strategies for

high-channel convolutional computation of the accelerator,

which will be mentioned in the following sections. After the

network computation, the feature points are converted into

the pose block diagram of the object by the PnP algorithm,

which is outside the scope of this work, so the final output of

the accelerator is the feature point diagram.

Table.1 PVNet network capacity
B L INPUT SIZE operate FLOPs（M）

#1 1 320×320×1 CONV 1006.08

2 160x160x64 MAXPOOL 0

3 80x80x64 residual block 147.456

4 80x80x64 residual block 147.456

5 40x40x128 residual block 36.864

6 20x20x256 residual block 9.216

#2 7 10x10x512 CONV,DownSimple 188.743

8 10x10x256 CONV,DownSimple 47.185

9 10x10x128 CONV,DownSimple 9,437

#3 10 10x10x64 CONV,UpSimple 6.968

#4 11 10x10x64 CONV,UpSimple 3.484

Total 1602.889

Table.2 MobileNetV2 network capacity
B L INPUT SIZE operate FLOPs（M）

#1 1 320x320x1 CONV 294.912

#2 2 160x160x32 Inverted Residual 442.368

3 160x160x16 Inverted Residual 106.168

4 80x80x24 Inverted Residual 23.311

5 80x80x24 Inverted Residual 11.640

6 40x40x32 Inverted Residual 7.258

7 40x40x32 Inverted Residual 7.258

8 40x40x32 Inverted Residual 7.368

9 20x20x64 Inverted Residual 7.147

10 20x20x64 Inverted Residual 7.147

11 20x20x64 Inverted Residual 7.147

12 20x20x64 Inverted Residual 10.721

13 20x20x96 Inverted Residual 16.108

14 20x20x96 Inverted Residual 16.108

15 20x20x96 Inverted Residual 11.289

16 10x10x160 Inverted Residual 10.373

17 10x10x160 Inverted Residual 10.373

18 10x10x160 Inverted Residual 16.065

19 10x10x320 CONV 41.472

#3 20 10x10x1280 CONV,UpSimple 59.904

21 20x20x256 CONV,UpSimple 47.185

22 40x40x128 CONV 18.874

#4 23 40x40x64 CONV,UpSimple 6.968

#5 24 40x40x64 CONV,UpSimple 3.484

Total 1297.308

IV. ACCELERATOR DESIGN

A. Overall structure

In order to enable networks to dynamically switch among

accelerators in real time, we adopt a collaborative

architecture, and the overall system architecture is shown in

Fig. 1. The compiler is responsible for generating the

corresponding control instructions according to the network

to be accelerated and does not participate in the acceleration

http://www.ijerm.com/

Low Power Pose Estimation Accelerator for Multiple Scenarios

 62 www.ijerm.com

process of the network. The host computer is responsible for

collaborating with the accelerator, sending the instructions,

weights, and data required by the accelerator to the

accelerator, and reading the data in the DDR after receiving

the completion signal from the accelerator and carrying out

the corresponding post-processing, such as the PnP

algorithm, etc. All the data control inside the accelerator is

carried out by the DDR. The data control inside the

accelerator is all taken care of by the instruction decoder,

while the instructions controlling the accelerator to perform

the computation are generated by the compiler before the

accelerator is deployed, and then written into the instruction

registers of the accelerator by the host computer through the

AXI-Lite bus. Similarly, the image data required for the

accelerator computation and large data such as weights are

written by the host computer via the AXI bus to the DDR to

be processed. When the decoder detects the start instruction

or the completion signal of the previous instruction in the

instruction register, it starts to decode the next instruction and

calls the corresponding module in the arithmetic library to

complete the corresponding calculations. If the next

instruction is the completion instruction, the accelerator

sends a completion interrupt signal to the host computer,

which is a complete acceleration process.

Fig.1 Overall System Architecture

In this work, the host computer can also achieve dynamic

clock output by accessing the DRP through configuration

registers using the AXI-Lite interface, with the control

module shown in Figure 2. This design allows the

accelerators deployed at the edge to increase the operating

frequency in real time according to the intensity of the work

to achieve higher real-time performance, and also reduce the

operating frequency to reduce power consumption. In

practical tests, under the premise of meeting the timing

convergence, this accelerator module supports an operating

frequency of up to 225MHz, and the power consumption

under different operating intensities is discussed in detail in

Section V.

Fig.2 Clock Control Module

B. Instruction set design

In this work, the accelerator works by controlling the data

flow through the decoder and the size and storage address of

the data to be computed and the type of computation to be

performed are stored in each instruction. In this architecture,

the design of the instruction set is particularly important. The

use of a complex instruction set will increase the user's

control over the details of the accelerator's operation, but it

will also increase the complexity of the decoding and will not

be conducive to subsequent development. In this design, our

instruction format is shown in Figure 3. The length of a single

instruction is 40 bits, where 38 and 39 bits are instruction

categories (green) and 0 to 37 bits are instruction details (blue

and orange). The instructions are classified based on the

category of the instruction, and the instructions in this work

are classified into four categories: state control, DMA

read/write, parameter setting, and operator selection. After

the decoder recognises the category part of the instruction, it

performs the corresponding work according to the different

values. The state control instructions mainly include the start

and stop of the accelerator, the start of the operator after the

data loading is finished, and the status return instruction

which is used by the host computer to check the current

progress of the accelerator.The first 2bits of the DMA

read/write instructions are used to differentiate between

read/write functions and read/write channels, because the

inputs of many operators in the accelerator consist of two

inputs (e.g., CONV), and so they contain two write

instructions and four read instructions. instructions. The first

bit of the operator type selection instruction is used to

distinguish whether the selection is for a CONV operator or

an operator in Shape. This instruction is used to configure the

parameters required for the operator to be run, and the first 4

bits of this instruction are used to activate the corresponding

registers to receive the parameters. Some of the parameter

setting instructions are shown in Fig. 3, such as the

convolution input and output sizes, the pre-convolution

Padding parameter settings, and the settings of the operator

parameters in Shape. When designing the instructions, we

reserve some expansion space for each type of instruction for

subsequent development of new operators and other work.

Fig.3 Instruction Format Design

C. Arithmetic library development

In this work, the operators in the operator library are

mainly classified into two categories based on their functions

in the network: the CONV module and the Shape module.

The CONV module is responsible for the convolutional

computation in the network. During the design of the

accelerator, we integrate the data preparation module before

convolution and the BN (batch normalisation) and activation

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-04, April 2025

 63 www.ijerm.com

operations after convolution in the CONV module, which

greatly reduces the bandwidth pressure and time loss caused

by the data mobilisation between the DDR and the

accelerator. The Shape module contains a number of network

operators such as MaxPool, Concat, MeanPool, etc. to

support network diversity.

Based on the network analysis in Section III, it can be

learnt that the convolutional computation is the most

computationally intensive and time consuming part of the

bit-posture estimation network. In the conventional

computational flow, in the case that the input size and output

size of the feature map are equal, the convolutional

computation flow is shown in the computational flow 1, and

the determinants of the time complexity consumed by the

convolutional computation are the number of convolutional

kernels, the size of the convolutional kernels, the image size,

and the image channel, and the size of the convolutional

kernels is generally 2 × 2 or 3 × 3 in the conventional

convolutional network, and in this work, this part is first

parallelised This part is first parallelised in this work by

setting Kh×Kw multipliers to unroll the loop part so that the

computation can be completed in one clock cycle in the

accelerator's computation flow. In addition to parallelisation

by unfolding the convolution kernel, parallelisation can also

be achieved by unfolding the input channel loops. In addition,

the present work can also set up more than one of the above

operations at the same time to achieve multiple convolutional

kernels at the same time to parallelise the computation of the

output channel. The efficiency of parallel processing for

input and output channels depends on the amount of

computational resources, and this work parameterises the

hardware code of this design so that the accelerator can set

the degree of parallelism according to the different

computational resources of the edge device in practical

applications. The computational flow II shows the

computational complexity after parallelisation.

calculation process 1 ：Conventional Convolution Process
f o r N t o Number o f K e rne l

 f o r H t o H e igh t o f Inpu t，W t o Wid t h o f Inpu t

f o r C t o Channe l o f Inpu t

 f o r K h t o H e igh t o f K e rne l，K w t o W i d t h o f K e rne l

 o u t pu t [n] [h] [w] += Input [c] [h+kh] [w +kw]* Ke rne l [n] [c] [kh] [kw]

calculation process 2 ：Accelerating the convolution process

f o r N t o Number o f K e rne l / P a r a l l e l i s m o f K e rne l

 f o r H t o H e igh t o f Inpu t，W t o Wid t h o f Inpu t

f o r C t o Channe l o f Inpu t / P a r a l l e l i sm o f Channe l

 o u t pu t [n] [h] [w] + =Input [c] [h+kh] [w+k w]* Ke rne l [n] [c] [kh] [kw]

Fig. 4 shows the convolutional processing flow inside the

re-accelerator, where the size of the convolutional kernel is

assumed to be 3 × 3. In order to parallelise the convolutional

kernel, we add two row buffers in the data collation stage,

which are used to generate three rows of feature data for

computation. After the data collation is completed, the

feature points of each row start flowing into the

computational units for multiplication computation.The

number of computational units depends on the size of the

convolutional kernel as well as the parallelism of the input

and output channels. In the figure it is assumed that the input

channel parallelism and output channel parallelism is 3. After

the completion of the multiplication operation, the obtained 9

pixel points and the results of each channel are summed up

through the addition tree to get the single channel result of a

pixel in the output result.

Fig.4 Convolutional Processing Flow

When the on-chip resources are sufficient, the output of the

convolution can be derived by repeating the above operation.

However, not all edge-side chips have sufficient resources,

especially when the number of parameters of some

convolution operations is large, the computational resources

consumed to perform one convolution are too much, in order

to cope with this situation, we can also lighten the

convolution processing. The process of distributed

convolution is shown in Fig. 5, which divides the image and

convolution kernel into two pieces by channel, and performs

two convolution and quantisation operations on the two parts

to obtain the corresponding results. After that, the previously

obtained results are summed and quantised by channel to

obtain the full results of this convolution. This calculation

method is to divide the original one convolution instruction

into two convolution instructions and one summing

instruction. Practical tests show that the distributed

convolution process consumes about 1.05 times as much time

as a normal convolution operation, while the input image and

the number of parameters remain unchanged, and most of the

extra time consumed is the time spent on moving data

between the DDR and the FPGA. Distributed convolutional

computation allows resource-scarce edge chips to perform

convolutional computation with high number of parameters

at a small cost of time while maintaining computational

accuracy.

Fig.5 Flow of distributed convolution

The Shape module is responsible for providing support for

operators other than convolutional computation in the

network. In this work, the size of the operators in the Shape

module is not fixed, and their number can be increased or

decreased depending on the network to be accelerated. This

approach allows the accelerator to support a wider variety of

networks, and also reduces unnecessary operators according

to the network to be accelerated, thus reducing unnecessary

resource usage and power consumption. In this work, the

operator library contains commonly used network operators

such as MaxPool, Concat, Add, Upsampling, Mul and

MeanPool. The hardware implementations of these classical

operators have been described in many previous works and

will not be repeated in this paper. In addition to these

classical operators, in order to support newer network

structures, we have also developed the HWD operator, which

achieves better results in image processing algorithms

http://www.ijerm.com/

Low Power Pose Estimation Accelerator for Multiple Scenarios

 64 www.ijerm.com

compared to other traditional downsampling

algorithms[26].The hardware implementation of the HWD

operator is shown in Fig. 6.

Fig.6 HWD operator architecture

V. RESULTS

A. Data sets and evaluation indicators

We chose the LineMod dataset as our test dataset during

the functional validation of the pose estimation accelerator.

This is a standard 6D object pose estimation dataset

containing multiple objects, viewpoints, and occlusion

situations, and this dataset is more conducive to verifying the

ability of our accelerator to work in complex situations. For

accuracy evaluation, we choose ADD (Average Distance of

Model Points) as the judging metric. In the usual judging

criteria, the ADD value of the network estimation result is

less than or equal to 10% is regarded as the correct estimation

of the object's pose, and this criterion is also adopted for our

accuracy calculation.

In this work, the quantised PVNet and MobileNetV2

network accuracies are shown in Table 3.PVNet, due to its

excellent performance in complex situations such as object

occlusion, achieved 84.53% accuracy in all categories of the

accuracy test, and 95.20% accuracy in the category of

Eggbox, and MobileNetV2, due to its MobileNetV2 is

slightly less accurate than PVNet due to its lightweight nature,

achieving 78.42% accuracy. In addition, we also list the

unquantised PVNet and MobileNetV2 network accuracies as

a comparison, and it can be seen that the 8bit quantisation

strategy adopted in this work has little effect on the accuracy.

Table.3 PVNet and MobileNetV2 network accuracy

Module Data Type GFLOPS（G） AP

PVNet Float-32 1.602 0.862

MobileNetV2 Float-32 1.297 0.809

PVNet Int-8 -- 0.845

MobileNetV2 Int-8 -- 0.784

The results of the PVNet as well as MobileNetV2

networks are shown in Fig. 7 and Fig. 8. Since the present

accelerator does not include the PnP object pose frame

generation aspect of object pose estimation, the graphs are

shown as a visualisation of the keypoints of the network

output.

Fig.7 PVNet Network Attitude Estimation Effect

Fig.8 MobileNetV2 Network Attitude Estimation Effect

B. Resource usage and power consumption

Table 4 shows the resource consumption of our accelerator

when deployed on the Virtex UltraScale+ VU9P platform.

Compared to the work of [20], which is a dedicated

accelerator, our LUTs and FFs consume less resources and

achieve more flexible acceleration. Moreover, this data is the

performance of the Shape module with all supported

operators fully loaded, and in the actual deployment, the

number of operators in the module can be deleted or reduced

according to the different accelerated networks to reduce the

resource consumption. The accelerator also supports

real-time dynamic adjustment of the operating frequency to

control the power consumption of the accelerator, the power

consumption data under different operating frequencies are

shown in Table 5.

Table.4 Accelerator resource consumption

Resource LUTs FFs BRAMs DSPs

Our Work 107954 157763 563.5 1033

[20] 131187 209200 348.5 642

Table.5 Power consumption of accelerators at different

operating frequencies

Frequency（hz） 200M 125M 50M

Total Power（W） 11.585 9.706 7.997

C. Comparison of work

In this work, we calculate the FPS by measuring the

difference between when the host computer sends the start

signal to the accelerator and when the host computer receives

the end signal from the accelerator.Most of the work

calculates the FPS by measuring the difference in time

between when the accelerator reads the initial data from the

DDR and when it writes the result back to the DDR.For the

same work, our way is lower in terms of the data compared to

this way. , but our measurement is more in line with the

performance effect when actually deployed. Table 6 shows

the comparison of our work with other work. Compared to

other existing state-of-the-art work, our flexible architecture

outperforms [27] in terms of DSP utilisation, and our work

meets the real-time requirements and outperforms [28] in

terms of FPS. Compared to [20], a lightweight dedicated

bit-pose estimation accelerator, our accelerator has some

disadvantages in terms of frame rate and power consumption,

but our architecture is more suitable for real-time scenarios

with complex environments and higher accuracy.

Table.6 job comparison

 [28] [29] [20] Our

wo rk

Our wo rk

P la t f o rm A r r i a1 0

So C

ZC7 0 6 XCK 3 2 5 T VU9 P VU9 P

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-04, April 2025

 65 www.ijerm.com

Net wo rk M o b i l e N

e t V 2
M o b i l e N e t

V 2 + S S D L i t e

M o b i l e N e t V

2 +

L i g h t P o s e

P VNET M o b i l e N e t V 2

+ P i x e l w i s e

V o t i n g
Freq

(MH z)
150 100 188 200 200

D S P

U t i l i z a t i o

n

1278 728 642 1033 1033

FPS 226 .2 64 .8 411 .6 98 .36 130 .24

Power (

W)

- - 9 .9 5 .03 11 .58

5

11 .585

VI. SUMMARY

We propose a low-power bit-posture estimation

accelerator for multi-scenario applications and deploy it on a

Virtex UltraScale+ VU9P FPGA. The accelerator achieves

excellent power performance with guaranteed accuracy and

real-time performance, allowing it to be used for real-time

efficient pose estimation in complex environments.

REFERENCES

[1] Hui, W., Aiyuan, L.: A systematic approach for english education

model based on the neural network algorithm. Journal of Intelligent &

Fuzzy Systems 40(2), 3455–3466 (2021)
[2] Wang, J., Chai, W., Venkatachalapathy, A., Tan, K.L., Haghighat, A.,

Veli pasalar, S., Adu-Gyamfi, Y., Sharma, A.: A survey on driver
behavior analysis from in-vehicle cameras. IEEE Transactions on

Intelligent Transportation Sys tems 23(8), 10186–10209 (2021)

[3] Sun, Z., Ke, Q., Rahmani, H., Bennamoun, M., Wang, G., Liu, J.:
Human action recognition from various data modalities: A review.

IEEE transactions on pattern analysis and machine intelligence 45(3),
3200–3225 (2022)

[4] Sereno, M., Wang, X., Besan¸con, L., Mcguffin, M.J., Isenberg, T.:

Collaborative work in augmented reality: A survey. IEEE Transactions
on Visualization and Computer Graphics 28(6), 2530–2549 (2020)

[5] Kosch, T., Karolus, J., Zagermann, J., Reiterer, H., Schmidt, A., Wo´
zniak, P.W.: Asurvey on measuring cognitive workload in

human-computer interaction. ACM Computing Surveys 55(13s), 1–39

(2023)
[6] Guan, J., Hao, Y., Wu, Q., Li, S., Fang, Y.: A survey of 6dof object

pose estimation methods for different application scenarios. Sensors
24(4), 1076 (2024)

[7] Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: Pvnet: Pixel-wise

voting net work for 6dof pose estimation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 4561–4570 (2019)
[8] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.:

Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4510–4520 (2018)

[9] Yuan, R., Jun, P., Jingjing, L., et al.: Overview of artificial intelligence
chip development. Micro/Nano Electronics and Intelligent

Manufacturing 1(2), 20–34 (2019) 15

[10] Li, Z., Zhang, Y., Wang, J., Lai, J.: A survey of fpga design for ai era.
Journal of Semiconductors 41(2), 021402 (2020)

[11] Kasiselvanathan, M., Sangeetha, V., Kalaiselvi, A.: Palm pattern
recognition using scale invariant feature transform. International

Journal of Intelligence and Sustainable Computing 1(1), 44–52 (2020)

[12] Agrawal, P., Sharma, T., Verma, N.K.: Supervised approach for object
iden tification using speeded up robust features. International Journal

of Advanced Intelligence Paradigms 15(2), 165–182 (2020)
[13] Ghaffari, S., Soleimani, P., Li, K.F., Capson, D.W.: Analysis and

comparison of fpga-based histogram of oriented gradients

implementations. IEEE Access 8, 79920–79934 (2020)
[14] Sikka, P., Asati, A.R., Shekhar, C.: Real time fpga implementation of a

high speed and area optimized harris corner detection algorithm.
Microprocessors and Microsystems 80, 103514 (2021)

[15] Ahmed, M.S., Aurpa, T.T., Azad, M.A.K.: Fish disease detection using

image based machine learning technique in aquaculture. Journal of
King Saud University-Computer and Information Sciences 34(8),

5170–5182 (2022)
[16] Silpa-Anan, C., Hartley, R.: Optimised kd-trees for fast image

descriptor match ing. In: 2008 IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1–8 (2008). IEEE
[17] Pan, S., Wang, X.: A survey on perspective-n-point problem. In: 2021

40th Chinese Control Conference (CCC), pp. 2396–2401 (2021). IEEE

[18] Zhang, J., Yao, Y., Deng, B.: Fast and robust iterative closest point.
IEEE Transactions on Pattern Analysis and Machine Intelligence

44(7), 3450–3466 (2021)

[19] Sohrabizadeh, A., Wang, J., Cong, J.: End-to-end optimization of deep

learning applications. In: Proceedings of the 2020 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, pp.
133–139 (2020)

[20] Wang, X., Zhang, Z., Wang, Y., Cai, C., Chen, G.: A fast and efficient
fpga-based pose estimation solution for iot applications. In: 2022 IEEE

65th International Midwest Symposium on Circuits and Systems

(MWSCAS), pp. 1–4 (2022). IEEE
[21] Fan, H., Liu, S., Ferianc, M., Ng, H.-C., Que, Z., Liu, S., Niu, X., Luk,

W.: A real-time object detection accelerator with compressed ssdlite on
fpga. In: 2018 International Conference on Field-programmable

Technology (FPT), pp. 14–21 (2018). IEEE

[22] Kim, V.H., Choi, K.K.: A reconfigurable cnn-based accelerator design
for fast and energy-efficient object detection system on mobile fpga.

IEEE Access 11, 59438–59445 (2023)
https://doi.org/10.1109/ACCESS.2023.3285279

[23] Miyama, M.: Fpga implementation of 3-bit quantized cnn for semantic

segmenta tion. In: Journal of Physics: Conference Series, vol. 1729, p.
012004 (2021). IOP Publishing

[24] Vanhoucke, V., Senior, A., Mao, M.Z., et al.: Improving the speed of

neural net works on cpus. In: Proc. Deep Learning and Unsupervised

Feature Learning NIPS Workshop, vol. 1, p. 4 (2011)

[25] Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented
approximation of convo lutional neural networks. arXiv preprint

arXiv:1604.03168 (2016)
[26] Xu, G., Liao, W., Zhang, X., Li, C., He, X., Wu, X.: Haar wavelet

downsampling: A simple but effective downsampling module for

semantic segmentation. Pattern Recognition 143, 109819 (2023)
[27] Zhao, R., Niu, X., Luk, W.: Automatic optimising cnn with depthwise

separable convolution on fpga: (abstact only). In: Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, pp. 285–285 (2018)

[28] Su, J., Faraone, J., Liu, J., Zhao, Y., Thomas, D.B., Leong, P.H.,
Cheung, P.Y.: Redundancy-reduced mobilenet acceleration on

reconfigurable logic for imagenet classification. In: Applied
Reconfigurable Computing. Architectures, Tools, and Applications:

14th International Symposium, ARC 2018, Santorini, Greece, May

2-4, 2018, Proceedings 14, pp. 16–28 (2018). Springer

http://www.ijerm.com/

	I. Introduction
	II. Related Work
	III. Network model analysis
	IV. Accelerator design
	A. Overall structure
	B. Instruction set design
	C. Arithmetic library development

	V. Results
	A. Data sets and evaluation indicators
	B. Resource usage and power consumption
	C. Comparison of work

	VI. SUMMARY
	References

