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Abstract—Ultrasonic sensors are widely used in mobile robot 

navigation due to their low cost and strong anti-interference 

capability. However, their inherent low resolution, wide beam 

angle, and sparse point cloud characteristics limit mapping 

accuracy. Traditional point cloud clustering and fitting-based 

mapping methods are easily affected by noise, making it 

difficult to meet the high-precision line feature mapping 

requirements in structured environments (such as indoor 

corridors and rooms). The Manhattan World Constraint 

(MWC) effectively reduces the impact of sensor errors by 

aligning environmental structures to orthogonal directions. 

Therefore, this paper proposes a novel MWC-integrated line 

feature mapping framework that enhances the robustness and 

accuracy of ultrasonic mapping through dynamic clustering, 

direction correction, and global optimization. 

 
Index Terms—Global Optimization; Line Feature Extraction; 

Manhattan World Constraint (MWC); Ultrasonic Mapping.  

 

I. INTRODUCTION 

Currently, environmental perception devices used for 

mobile robot mapping mainly include laser sensors, vision 

sensors, and ultrasonic sensors. However, the performance of 

these sensors varies significantly across different 

environments. For example, although laser sensors can 

acquire precise point cloud information, they exhibit weak 

reflection signals when encountering transparent surfaces or 

harsh environments, leading to large measurement errors. 

Additionally, in indoor contour detection, the high cost of 

LiDAR technology limits its advantages. 

Compared to LiDAR and vision sensors, ultrasonic 

sensors have become a commonly used method for mobile 

robots to detect their surroundings and obtain contour 

features of unknown environments due to their low cost, high 

stability, and ease of control [1-3]. By utilizing the time delay 

of sound wave propagation for distance measurement, 

ultrasonic sensors can effectively perform short-range 

positioning and obstacle detection. Compared to other 

sensors, ultrasonic sensors offer relatively high accuracy in 

small-scale environments and are less sensitive to 

environmental changes. Therefore, they hold strong 

application potential in indoor environments [4-6]. 

Although ultrasonic sensors have certain advantages in 

terms of cost and applicability, they also face the following 

challenges: 

(a)Low Angular Resolution: Ultrasonic sensors have a 

wide beam angle, resulting in significantly lower angular 

resolution compared to LiDAR and vision sensors. This 

leads to greater uncertainty in measurement results [7]. 

(b)Sparse Point Cloud Data: The point cloud data provided 
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by ultrasonic sensors is relatively sparse, making it difficult 

to be directly used for high-precision map construction. 

(c)Multipath Reflection in Corners: Ultrasonic sensors are 

prone to multipath reflections in corners, which can lead to 

the Region of Constant Depth (RCD) effect [8]. 

Therefore, research on environment perception based on 

ultrasonic sensors is an important challenge. 

In response to the demand for high-precision 

environmental perception, ultrasonic sensors, with their 

mature technology, low cost, and wide applicability, have 

shown enormous potential and commercial value in the field 

of mobile robotics. Therefore, optimizing environmental 

perception algorithms, reducing the crosstalk of ultrasonic 

signals, and improving detection efficiency to meet the 

required environmental perception accuracy are key factors 

in advancing ultrasonic mapping technology. 

In recent years, significant progress has been made in 

ultrasonic technology, with many research teams 

continuously optimizing the ultrasonic transmission and 

reception structures to improve measurement accuracy [9]. 

Wei Song and others developed an ultrasonic distance sensor 

with a small beam angle to address the false alarm issues 

caused by the large beam angle of ultrasonic sensors in 

reverse driving applications, effectively reducing 

measurement errors. Chen and colleagues combined 

composite ceramic sol-gel thin film technology with sol-gel 

infiltration methods to successfully produce ultrasonic 

transducers with frequencies as high as 300 MHz, promoting 

the advancement of transducer frequencies in this field [10]. 

Meanwhile, new sonar positioning algorithms have been 

proposed to further optimize positioning accuracy. Inspired 

by the development of computer vision and machine learning 

technologies, researchers have begun to integrate ultrasonic 

waves with deep learning, leveraging signal processing and 

visual constraints to optimize sonar positioning systems and 

improve overall perception capabilities. For example, Zhao 

and others used deep learning methods to analyze sonar 

images, effectively enhancing the network’s target 

recognition ability; Yonghong Zhang and colleagues 

employed wavelet transform-based empirical mode 

decomposition to process ultrasonic signals, significantly 

improving denoising effects. 

Currently, research on ultrasonic SLAM is still in a 

relatively immature stage. Researchers mainly focus on 

improving the accuracy of ultrasonic data and extracting key 

features. However, issues such as the sparsity of point clouds 

and low distance measurement accuracy of ultrasonic 

sensors remain unresolved. 

This paper primarily studies methods for map construction 

based on ultrasonic sensors in indoor environments. In 

indoor settings, the walls and buildings typically conform to 

the Manhattan World Constraint (MWC), meaning that the 

walls and major structures in the environment are mostly 
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parallel or perpendicular to fixed global coordinate axes. 

This geometric constraint has been widely applied in visual 

SLAM [11-13] and LiDAR-based map optimization [14]. 

Abadi et al. [15] first applied it to map construction based on 

ultrasonic sensors. This method can effectively describe the 

structural features of indoor environments, but the resulting 

maps are incomplete, lacking global map optimization, and 

do not integrate odometry and IMU sensors for simultaneous 

localization. This study optimizes the mapping results by 

incorporating dynamic clustering, direction correction, and 

global optimization into the map construction method. 

Section 2 of this paper explains the three steps of the 

mapping algorithm. Section 3 presents the experimental 

results, which demonstrate that applying the MWC 

constraint can provide a more accurate indoor map. The 

experimental results are compared with the ground truth 

map. 

 

II. METHODOLOGY 

In the method described in this section, it is assumed that 

the robot's trajectory is known. A line feature-based map 

construction method based on the Manhattan World 

Constraint (MWC) is used to build the environmental map of 

the robot, addressing the issues of low precision, low 

resolution, and sparse point clouds in ultrasonic sensors. 

The method consists of three main steps. In the first step, 

an improved DBSCAN clustering algorithm is used, with 

adaptive parameter adjustments to enhance the robustness of 

the clustering process. Then, line segment fitting is 

performed using RANSAC and PCA. In the second step, the 

MWC is applied for line segment direction correction, 

ensuring strict alignment with horizontal or vertical 

directions to reduce ultrasonic measurement errors. Finally, 

in the third step, global map optimization is carried out 

through edge and corner point classification, line segment 

merging, virtual intersection generation, and corner 

completion to improve the accuracy and completeness of the 

map. 

A. Step1(Point Cloud Clustering and Line Segment 

Fitting) 

The raw point clouds generated by ultrasonic sensors 

suffer from high sparsity and significant noise. The 

traditional DBSCAN algorithm, due to the fixed 

neighborhood radius (ϵ) and minimum points for clustering 

( MinPts ), is prone to over-segmentation or missed 

detection. To address this issue, this section uses an 

improved DBSCAN algorithm that enhances the clustering 

robustness of sparse point clouds through dynamic parameter 

adjustment and local region constraints. 

The traditional DBSCAN algorithm uses a fixed ϵ, making 

it difficult to adapt to changes in point cloud density at 

different distances (high density at close range, low density 

at long range). The improved DBSCAN algorithm 

dynamically calculates ϵ based on the average neighbor 

distance of the current scanned point set. This adjustment 

allows the algorithm to better handle variations in point 

cloud density, improving its ability to cluster sparse data 

effectively. 

In addition, to avoid overfitting or misclassification of the 

data, this paper also introduces a strategy for adaptively 

adjusting the MinPts  based on the data distribution. The 

dynamic MinPts  is set as follows: 

 ( )totalmax 3,MinPts N=     (1) 

In the formula, 
totalN  represents the total number of points 

in a single scan, and   is the proportional coefficient. This 

method enforces a minimum threshold when the point cloud 

is sparse to ensure that MinPts  does not become too low, 

which could lead to noise points being misclassified. 

Meanwhile, when the data is larger, the value of MinPts  can 

reasonably reflect the distribution characteristics of the data, 

avoiding errors during clustering. 

By incorporating the pose of the mobile robot, the 

clustering search range is restricted to the sector area in the 

current scanning direction, preventing cross-region 

misclustering. 

As shown in Figure 1, (a) depicts the real environment 

being detected, while (b) and (c) compare the clustering 

results of this typical data frame in the ultrasonic point cloud 

data using the traditional DBSCAN algorithm and the 

improved DBSCAN algorithm, respectively. 

 
Figure 1 Comparison of clustering results between the traditional DBSCAN 

and the improved DBSCAN algorithms 

 

In Figure 1, the areas highlighted by the red boxes in (b) 

and (c) were misclassified as noise in the traditional 

DBSCAN algorithm, whereas in the improved DBSCAN 

algorithm, they were correctly classified as point cloud data 

of the real environment. 

To improve the quality of the clustering results, this study 

also applied post-processing to the clustered data. First, 

isolated points were removed by eliminating clusters with 

fewer than MinPts  points to reduce noise. Then, boundary 

points of the clusters were smoothed, and outliers deviating 

from the main distribution were removed through a 

secondary density check, thereby enhancing the accuracy of 

the clustering. 

After completing point cloud clustering, precise line 

segment features need to be extracted from each local point 

cloud cluster. To achieve high-precision and high-robustness 

line segment detection, this method employs an iterative 

RANSAC-PCA fusion algorithm to generate candidate line 

segments, and estimates endpoints and merges redundant 
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segments through a statistical-geometric joint optimization 

strategy. 

First, the RANSAC algorithm is used to iteratively 

generate candidate line segments. After obtaining a local 

point cloud cluster, two points are randomly sampled from 

the cluster to generate a line model L : ax + by + c = 0  The 

perpendicular distance 
id  from all points in the cluster to the 

line L  is calculated. If 
i thd d , the point is considered an 

inlier of the line segment.
thd  is a threshold set 

experimentally. The number of inliers for this line segment is 

then calculated and recorded. 

Then, two different points are randomly sampled from the 

point cloud cluster—distinct from the previous pair—and the 

above steps are repeated. This process continues until the 

model with the highest number of inliers is selected. The 

corresponding line is retained in the candidate line segment 

set candidate { }jL L= , and its inliers are removed from the point 

cloud cluster. The process is iterated until the number of 

remaining points falls below MinPts . 

Moreover, for each line segment detected and deemed 

suitable for inclusion in the candidate set, the PCA method is 

employed to verify its quality and improve its accuracy. This 

is done by calculating the covariance matrix of the point set 

belonging to each candidate line segment, from which 

eigenvalues and eigenvectors are obtained to assess the 

goodness of fit.Specifically, for each candidate line segment 

jL , the covariance matrix C  of the points belonging to the 

line segment is computed as follows: 

 
1

1
( )( )

N
T

i i

i

C p p
N

 
=

= − −  (2) 

Here,   represents the mean of all the points. By 

computing the eigenvalues 
1  and 

2 , if the eigenvalues of 

the line segment satisfy condition 
1 1 2 0.8/ 5   +（ ） , the 

segment is considered valid; otherwise, it is removed from 

the candidate line segment set. The results of the line 

segment fitting are shown in Figure 2. 

 
Figure 2 Line Fitting Results 

 

The overall iterative process of the algorithm is shown in 

Figure 3. 

 
Figure 3 Iterative Flowchart of the Line Segment Fitting Algorithm 

 

B. Step 2 (Application of Manhattan World Constraints) 

The Manhattan World Constraints (MWC) establish a 

framework for spatial perception by aligning a structured 

coordinate system with the environmental geometric features, 

providing spatial constraints for the mobile robot. The 

implementation process first relies on the calibration of the 

initial pose: when the mobile robot starts, it must ensure that 

the initial heading direction is as aligned as possible with the 

dominant physical structures in the environment (such as 

wall edges or corridor orientations). The initial pose is used 

as the global coordinate system, with the initial heading 

direction defined as the X-axis of the global coordinate 

system. This direction is also defined as the primary segment 

direction, which is then used to constrain the correction 

direction of detected line segments. This allows alignment 

with the dominant structures in the environment (such as 

walls), thereby reducing the impact of the ultrasonic sensor's 

low precision and resolution on map building. 

The line segment angle correction based on the primary 

segment direction is the core component of the Manhattan 

World Constraints (MWC) application. It involves rotating 

and adjusting the direction of the line segments to make them 

strictly parallel or perpendicular to the primary segment 

direction (i.e., the X/Y axes of the global coordinate system). 

This section describes in detail the generation of the 

correction angle, the selection of the optimal rotation 

strategy, and the implementation process of the 

midpoint-based rotation transformation. 

First, the correction angle for all line segments is 

calculated. For each line segment iL , its current direction 

angle i  is computed based on its endpoints. Then, two 

candidate correction angles are generated: the parallel 
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correction angle and the perpendicular correction angle. The 

parallel correction angle refers to rotating the line segment to 

make it parallel to the primary segment, with the target 

direction being 0° or 180°. The corresponding rotation angles 

are i i = −  or i i  = − . 

Then, to ensure the minimum geometric disturbance after 

the rotation, the smallest absolute rotation angle is selected 

from the parallel correction angle and the perpendicular 

correction angle as the final correction angle: 

  ,

ˆ arg min | |
i i

i   
 ⊥

=  (3) 

Next, the rotation operation is applied to the line segments 

that need correction. 

To avoid cumulative errors introduced by global 

coordinate transformations, the rotation strategy uses the 

midpoint iC  of each line segment as the local reference 

point. First, the endpoints of the line segment are translated 

to a local coordinate system with iC  as the origin: 
i i i

local globalE E C= − . Then, a rotation matrix ˆ( )iR   is applied 

to rotate the line segment 
rotated

ˆ( )i i

i localE R E=  . Finally, the 

rotated coordinates are translated back to the global 

coordinate system: d

i i i

corrected rotateE E C= + . 

With this strategy, the direction of the line segments that 

need correction is adjusted to align with the Manhattan 

constraint direction, while keeping the midpoint of the line 

segment unchanged. This avoids global rotations that could 

cause overall map distortion. 

In some complex environments, if the correction rotation 

angle of a line segment is large, it may be due to noise or 

misdetection. In this case, instead of correcting the line 

segment, it is temporarily moved to the corner point 

candidate set (see Step 3) to avoid erroneous corrections. The 

corrected results are shown in Figure 4. 

 
Figure 4 Results after applying Manhattan World Constraints 

 

C. Step 3 (Global Map Optimization) 

During the ultrasonic mapping process, directly using the 

extracted line segments to construct the map may be affected 

by sensor noise, the ultrasonic Region Constant Depth (RCD) 

effect, and data sparsity, leading to issues such as false corner 

points and broken line segments. Therefore, further 

optimization of the global map is required to improve its 

coherence and accuracy. 

The distinction between edges and corner points is a key 

step in constructing a structured line-based map. Due to the 

ultrasonic sensor's Region Constant Depth (RCD) effect near 

corner points, it fails to reflect the true characteristics of 

corner points, instead presenting false linear features, as 

shown in Figure 5. The area within the red box in the figure 

illustrates the RCD effect. Therefore, line segments need to 

be classified into environmental main structures (such as 

wall edges) or potential corner points (such as room corners) 

based on their features. Since this study is based on the 

Manhattan World Constraints, the line segments 

corresponding to the expected indoor environment structures 

generally have small correction angles. This section 

implements the classification of edges and corner points 

based on the correction angle threshold and geometric 

feature verification strategy. 

 
Figure 5 Constant Depth Effect Near Corner Points 

For each line segment, the absolute value of its correction 

angle ̂  reflects the magnitude of the direction adjustment. 

If the correction angle is small, it indicates that the original 

direction of the line segment is close to the Manhattan 

constraint axes (X/Y axes), typically corresponding to wall 

edges or large furniture edges. If the correction angle is large, 

it may be caused by the following reasons: 

(a)Region Constant Depth (RCD) Effect Near Real Corner 

Points: The wide beam angle and low resolution of the 

ultrasonic sensor cause the point cloud near corners to form 

false linear features, leading to the RCD effect. 

(b)Dynamic Occlusion or Sensor Noise. 

The classification of edges and corner points is based on 

the following rules: 

 th
ˆ , if | |

   , otherwise

i
i

Edge Set
L

Corner Point Candidate Set C

   


 

 

E
 (4) 

Here, 
th  represents the angle threshold set for the 

experiment. 

For the line segments that belong to the corner point 

candidate set, they are false linear features caused by the 

Region Constant Depth (RCD) effect near real corner points 

or noise. Therefore, these line segments need to be removed 

from the map. In the subsequent steps, the corner point 

candidate set will be used to further optimize the map. 

The line segments classified as edges need to be merged 

into continuous segments. The goal during the line segment 

merging process is to combine two line segments that are 

spatially close and have consistent directions, thereby 

enhancing the continuity and compactness of the map. To 

achieve this goal, a set of merging conditions must be met. 

The specific conditions include direction consistency, 

projection overlap, and spatial proximity. 

First, for two line segments 
1L  and 

2L , it is necessary to 

verify whether they satisfy the following conditions: 

(a)Direction Consistency: The angle   between the two 

line segments must be less than 5°, meaning their directions 

are close. 

(b)Projection Overlap: Calculate the projection overlap of 

the two line segments in the same direction. First, project the 

two line segments onto the same coordinate axis, then 

calculate the intersection of their projection intervals. The 

http://www.ijerm.com/


International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-12, Issue-04, April 2025 

                                                                                              56                                                                                  www.ijerm.com  

projection overlap is the ratio of the length of the intersection 

to the maximum projection length of the two line segments. 

(c)Spatial Proximity: Calculate the directional distance 

centerd  between the centers of the two line segments. 

Specifically, when the angles of the two line segments are 

aligned with the x-axis, calculate the distance between the 

centers of the two line segments along the y-axis. When the 

angles of the two line segments are aligned with the y-axis, 

calculate the distance between the centers along the x-axis. 

This distance is referred to as the directional distance 
centerd  

between the two line segments. When 0.15centerd m , the 

two line segments are considered to satisfy the spatial 

proximity condition. 

When the two line segments meet the above conditions, 

the merging operation is performed. First, the Hausdorff 

distance 
Hd  between the endpoints of the two line segments 

needs to be calculated. The Hausdorff distance is used to 

measure the farthest point distance between the two line 

segments in space. The formula for calculating the Hausdorff 

distance is: 

 1 1 1 3 3 2

3 3 2 1 1 1

2 2

( , ) ( , ) 1 3 1 3

2 2

( , ) ( , ) 3 1 3 1

max min ( ) ( ) ,
max

max min ( ) ( )

x y L x y L

H

x y L x y L

x x y y
d

x x y y

 

 

 − + −
 =
 − + − 

 (5) 

Use these two points as the new endpoints of the merged 

line segment. 

To satisfy the Manhattan World Constraint, the merged 

line segment needs to be rotated. Based on the length ratio of 

the two line segments, the reference point for rotation is 

determined, and then the Manhattan World Constraint is 

applied to the merged line segment according to the method 

in Step 2. 

Through these steps, the edge line segments that meet the 

conditions are merged, improving the accuracy and 

continuity of the map construction. 

The generation and verification of virtual intersection 

points is the basis for further map optimization. The goal is to 

use geometric reasoning and point cloud feature analysis to 

determine whether the intersection point truly exists in the 

real environment, laying the foundation for constructing a 

coherent line-based map. The intersection points formed by 

the dashed lines in Figure 6(b) are virtual intersection points 

that exist in the real structure. To achieve this goal, 

intersection points need to be calculated based on 

non-parallel line segments, and the validity of these 

intersection points must be verified. 

 
Figure 6 Virtual intersection points in the Manhattan-constrained map 

 

For two non-parallel line segments iL  and jL , the first 

step is to calculate their theoretical intersection point as a 

candidate virtual intersection point. First, parameterize line 

segment 
iL , given its endpoint coordinates 1 1 1( , )i i iE x y=  and 

2 2 2( , )i i iE x y= . The parametric equation of the line segment 

is: 

 
1

1

:
i

i

i i

i

x x t x
L

y y t y

 = + 


= + 
 (6) 

Where 2 1

i i

ix x x = −  and 2 1

i i

iy y y = −  are the 

coordinates of the endpoints, and [0,1]t   is the parameter. 

Similarly, the equation of line segment jL  is: 

 
1

1

:

j

j

j j

j

x x s x
L

y y s y

 = + 
 = + 

 (7) 

Where 
2 1

j j

jx x x = −  and 
2 1

j j

jy y y = −  are the 

coordinates of the endpoints, and [0,1]s   is the parameter. 

By solving the system of equations of these two line 

segments, the following linear system is obtained to solve for 

the intersection parameters t  and s : 

 
1 1

1 1

j i
ji

j i
ji

xx t x x

yy s y y

   − 
=    

−
− −    

 (8) 

If the system of equations has a solution and both [0,1]t   

and [0,1]s   are valid, then the intersection point is 

considered the actual intersection of the two line segments; 

otherwise, the intersection point is considered a virtual 

intersection point on the extension of the line segments. 

Ignoring the parameter range constraints, the virtual 

intersection point P = (x , y )ij p p  can be directly solved. 

 
1 1( , ) ( , )i i

ij p p i iP x y x t x y t y= = +  +   (9) 

After generating the virtual intersection point, validity 

verification is required to ensure it is a real intersection point 

rather than a false one caused by mismatches. If the two line 

segments are orthogonal after correction, and the minimum 

distance 0.35md m  between their endpoints or the 

intersection point ijP  lies within the neighborhood of a line 

segment 
kL  in the corner candidate set C , then 

1 2
th{ , }

,min k kk ijE E E
L C P E r


  − ‖ ‖ , it is considered that the 

intersection point is valid. 

For actual intersection points, any part exceeding the 

intersection boundary should be removed. For valid virtual 

intersection points, the two line segments associated with the 

virtual intersection point should be extended to the 

intersection, in order to more accurately reflect the 

environmental features. 

After completing the previous steps, there are still corner 

features in the map that are not effectively connected. In the 

map, there are parallel edge segments with nearby endpoints, 

which have not been effectively connected because they did 

not meet the merging conditions and did not form virtual 

intersection points. As shown in Figure 7(b), the section 

within the red box represents a corner that exists in the real 

environment but has not been completed in the map. 
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Figure 7 Partial map construction results 

So, further optimization and completion of the map are 

required, and the process is as follows: 

For the two segments 
1L  and 

2L  that meet the above 

characteristics, their adjacent endpoints 
1 1P L  and 

2 2P L  

are used to calculate the midpoint coordinates M . Then, 

based on the direction vector of segment 
1L , an orthogonal 

line equation passing through point M is generated. 

Segments 
1L  and 

2L  are projected onto the orthogonal line, 

and the intersection points 
1Q  and 

2Q  are solved. Finally, 

extend the two segments to the corresponding intersection 

points, and retain the segment with endpoints 
1Q  and 

2Q . 

The result after optimization and completion is shown in 

Figure 8. 

 
Figures 8 Optimized Completion Results 

 

Thus, the line-based map construction based on the 

Manhattan World Constraint is completed. In the next 

section, a mapping experiment is conducted in a corridor 

scenario, and the results are analyzed. 

III. RESULTS 

This section conducts a mapping experiment in a 

structured corridor environment, which includes key 

structural features such as walls and doorframes, to validate 

the effectiveness of the line-based map construction method 

based on the Manhattan World Constraint (MWC). To assess 

the accuracy of the mapping results, manually measured 

results are used as the reference for the real map of the 

experimental environment, which is compared with the 

generated map. The experimental area and the corresponding 

real map schematic are shown in Figure 9. 

 
Figure 9 Experimental Site 

 

he experimental robot is equipped with an ultrasonic 

sensor, which rotates and scans from 90° to -90° with a step 

size of 2°, collecting ultrasonic point cloud data frames, as 

shown in Figure 10. The robot moves along a straight line in 

the center of the corridor, with a measurement point set every 

0.5 meters, as indicated by the red circles in Figure 9(b). At 

each measurement point, the robot pauses and scans. The 

collected data undergoes point cloud clustering, line segment 

fitting, and Manhattan World Constraint (MWC) 

optimization, ultimately resulting in a complete line-based 

map. 

             
Figure 10 Experimental Robot 

Figure 11 shows the initial point cloud data (Figure 11(a)), 

the map after applying the Manhattan World Constraint and 

completing line segment merging (Figure 11(b)), and the 

globally optimized line-based map (Figure 11(c)). The black 

solid lines in the figure represent the actual contours of the 

environment, the red line segments in Figure 11(b) represent 

the map after applying the Manhattan World Constraint and 

completing the line segment merging, and the red solid lines 

in Figure 11(c) represent the final optimized line-based map. 

Comparing these, it can be observed that the map after 

applying the Manhattan World Constraint better captures the 

corridor boundaries and aligns strictly with the main 

direction. However, the map lacks continuity, and some 

structural information is not effectively integrated. After 

further global optimization, the overall structure of the 

line-based map is more coherent and more closely matches 

the contours of the real environment. 

Figure 11 Line-based Map Construction 
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To objectively evaluate the mapping accuracy of the 

proposed method, Corner Detection Rate (CDR) is used to 

assess whether the map accurately reflects the true structural 

features of the environment, while Distance Error (DE) is 

employed to measure the overall geometric accuracy of the 

map. 

(a)Corner Detection Rate (CDR):This metric is defined as 

the ratio of the number of correctly detected real corners to 

the total number of actual corners in the environment. It 

evaluates the accuracy of corner detection. 

 
detected

total

100%
N

CDR
N

=   (10) 

Where 
detectedN  is the number of detected corners and 

totalN  is the total number of actual corners in the 

environment. 

The calculated corner detection rate for this experiment is 

90.91%, indicating that the optimized map can effectively 

reflect the structural features of the real environment. 

(b)Distance Error (DE): Defined as the average minimum 

distance between the constructed line-based map 
map

L  and the 

set of ground-truth line segments 
real

L , this metric evaluates 

the overall geometric accuracy of the map. Given mapL  and 

realL  as the respective sets of line segments, the definition is 

as follows: 

 
real real

( )

map real

1

1
min ( , )

M
i

L

i

DE d L L
M


=

=  L
 (11) 

The calculation results show that the average distance 

error of the line-based map obtained from the experiment is 

4.931 cm. Table 1 presents five sets of distance error data. 
Table 1 Map Line Segment Endpoints and Errors 

Serial Number 
Endpoint 

Coordinates (m) 
Error (m) 

1 
（0.006，0.991） 

（1.184，0.991） 
0.009 

2 
（0.003，-0.947） 

（1.216，-0.947） 
0.037 

3 
（1.216，-1.242） 

（1.216，-0.947） 
0.134 

4 
（4.482，-1.242） 

（5.624，-1.242） 
0.021 

5 
（5.663，-0.494） 

（5.663，0.976） 
0.012 

 

IV. CONCLUSION 

This paper focuses on the construction of line-based maps 

based on the Manhattan World Constraint (MWC) to address 

issues such as low accuracy, low resolution, and sparse point 

cloud data from ultrasonic sensors. To validate the 

effectiveness of the proposed method, mapping experiments 

were conducted in a structured corridor environment. The 

experimental results show that after applying the MWC, the 

line-based map can more accurately depict environmental 

boundaries and align with the main direction. After further 

global optimization, the map's continuity is significantly 

improved, closely matching the real environment's contours. 

Quantitative evaluation using Corner Detection Rate (CDR) 

and Distance Error (DE) shows that the map's corner 

detection rate is 90.91%, and the average distance error is 

4.931 cm, indicating that the method effectively enhances the 

accuracy and completeness of map construction. 

Although the use of the MWC has improved the map 

accuracy in structured environments, its applicability 

remains limited in unstructured scenarios (such as outdoor 

and complex indoor environments). Therefore, future work 

could explore integrating geometric feature extraction 

methods to enhance the adaptability of ultrasonic SLAM in 

complex environments  

REFERENCES 

[1] Dobrev Y, Gulden P, Vossiek M. An indoor positioning system based 

on wireless range and angle measurements assisted by multi-modal 

sensor fusion for service robot applications[J]. IEEE Access, 2018, 6: 
69036-69052. 

[2] Vanderelst D, Steckel J, Boen A, et al. Place recognition using batlike 

sonar[J]. Elife, 2016, 5: e14188. 
[3] Eliakim I, Cohen Z, Kosa G, et al. A fully autonomous terrestrial 

bat-like acoustic robot[J]. PLoS computational biology, 2018, 14(9): 
e1006406. 

[4] Kim S J, Kim B K. Dynamic ultrasonic hybrid localization system for 

indoor mobile robots[J]. IEEE Transactions on Industrial Electronics, 
2012, 60(10): 4562-4573. 

[5] Dos Santos M, Ribeiro P O, Núñez P, et al. Object classification in 

semi structured enviroment using forward-looking sonar[J]. Sensors, 
2017, 17(10): 2235. 

[6] Plonski P A, Vander Hook J, Peng C, et al. Environment exploration in 

sensing automation for habitat monitoring[J]. IEEE Transactions on 
Automation Science and Engineering, 2016, 14(1): 25-38. 

[7] Abdessalem A B, Jenson F, Calmon P. Quantifying uncertainty in 

parameter estimates of ultrasonic inspection system using Bayesian 
computational framework[J]. Mechanical Systems and Signal 

Processing, 2018, 109: 89-110. 

[8] Leonard J J, Durrant-Whyte H F, Cox I J. Dynamic map building for 

an autonomous mobile robot[J]. The International Journal of Robotics 

Research, 1992, 11(4): 286-298. 

[9] Chen J, Fei C, Lin D, et al. A review of ultrahigh frequency ultrasonic 
transducers[J]. Frontiers in Materials, 2022, 8: 733358. 

[10] Chen X, Fei C, Chen Z, et al. Simulation and fabrication of 0–3 

composite PZT films for ultrahigh frequency (100–300 MHz) 
ultrasonic transducers[J]. Journal of Applied Physics, 2016, 119(9). 

[11] Elloumi W, Treuillet S, Leconge R. Real-time camera orientation 

estimation based on vanishing point tracking under manhattan world 
assumption[J]. Journal of Real-Time Image Processing, 2017, 13(4): 

669-684. 

[12] Huang Z, Gu N, Lin C, et al. Real time vanishing points detection on 
smartphones under Manhattan world assumption[J]. Pattern 

Recognition Letters, 2018, 115: 117-127. 

[13] Zou D, Wu Y, Pei L, et al. StructVIO: Visual-inertial odometry with 
structural regularity of man-made environments[J]. IEEE Transactions 

on Robotics, 2019, 35(4): 999-1013. 

[14] Peasley B, Birchfield S, Cunningham A, et al. Accurate on-line 3D 
occupancy grids using Manhattan world constraints[C]//2012 

IEEE/RSJ International Conference on Intelligent Robots and 

Systems. IEEE, 2012: 5283-5290. 
[15] Abadi I, El-Sheimy N. Manhattan world constraint for indoor 

line-based mapping using ultrasonic scans[C]//2022 IEEE 12th 

International Conference on Indoor Positioning and Indoor Navigation 
(IPIN). IEEE, 2022: 1-8. 

http://www.ijerm.com/

	I. INTRODUCTION
	II. METHODOLOGY
	A. Step1(Point Cloud Clustering and Line Segment Fitting)
	B. Step 2 (Application of Manhattan World Constraints)
	C. Step 3 (Global Map Optimization)

	III. RESULTS
	IV. Conclusion
	References

