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Abstract— Path planning is a critical problem in robotics, aimed 

at generating efficient and smooth trajectories for robots. 

However, traditional algorithms like A* often suffer from low 

search efficiency, redundant nodes, and discontinuities in 

velocity and acceleration at path corners. To address these 

issues, this paper presents a path planning framework that 

combines the Optimized Bidirectional A* algorithm, the 

Critical Node Retention algorithm, and the Minimum Snap 

algorithm. The framework enhances the path planning process 

in three stages: First, the Bidirectional A* search is optimized 

by utilizing a weighted heuristic function to improve search 

efficiency and reduce unnecessary node expansions. Second, the 

Critical Node Retention algorithm refines the path by retaining 

only critical nodes, reducing redundancy and shortening the 

path length. Finally, the Minimum Snap algorithm smooths the 

path, ensuring continuous velocity and acceleration, thereby 

generating safer and smoother trajectories. Simulation 

experiments on grid maps of various sizes demonstrate that the 

proposed framework effectively reduces path length, improves 

search efficiency, and generates smooth, safe trajectories, 

providing an efficient solution to path planning. 

 

       Index Terms—Mobile Robot, Path Planning, A* Algorithm, 

Minimum Snap Algorithm  

I. INTRODUCTION 

  In recent years, due to technological innovation and 

development, mobile robots have been widely used in 

agriculture, healthcare, the military, etc.[1]. Path planning, 

crucial for mobile robots' autonomous navigation, is a key 

technology[2], aiming to find a lowest-cost and collision-free 

path between start and target nodes in a specific environment 

[3], where the lowest cost means the shortest path length, 

fastest planning time, least energy consumption, etc.[4]. 

Finding the lowest-cost safe path in a specific environment 

has become a hot research topic in mobile robot path 

planning. 

Currently, numerous researchers have extensively studied 

the path planning problem for mobile robots and proposed 

various algorithms. Classical algorithms include the Genetic 

Algorithm (GA) [5], Ant Colony Optimization (ACO) [6], 

Particle Swarm Optimization (PSO) [7], Rapidly-exploring 

Random Tree (RRT) [8], and A* algorithm [9], among 

others. The GA is widely used in path planning due to its 

parallelism  

and strong convergence. However, it suffers from low search 

accuracy and poor path convergence quality [10]. The ACO 

algorithm, known for its distributed computing capabilities 
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and robustness, is commonly applied to mobile robot path 

planning. Despite this, it faces challenges regarding planning 

efficiency and slow convergence [11]. The PSO algorithm 

offers advantages such as fast search speed, simple structure, 

and ease of implementation [12]. However, its reliance on a 

single guidance mechanism and the design of acceleration 

and inertia weights leads to low efficiency and inability to 

guarantee convergence to the global optimum [13]. The RRT 

algorithm can quickly find feasible paths in complex 

environments [14], but its limited search range reduces its 

ability to navigate narrow passages, hindering the discovery 

of optimal paths [15]. In contrast, the A* algorithm, a classic 

heuristic search method, is favored in path planning due to its 

simplicity and efficient search strategy [16]. Nevertheless, it 

faces several challenges in complex environments, such as 

long search times, redundant nodes, and discontinuities in 

velocity and acceleration at path corners.  

To address the issues in path search and improve both path 

quality and search efficiency of the A* algorithm, researchers 

have proposed a series of optimization methods. Ref.[17] 

improved the A* algorithm by combining Euclidean distance 

with point-to-line distance in a hybrid heuristic function, 

which reduced the number of search nodes and enhanced 

search efficiency. Ref.[18] incorporated jump point search 

with the traditional A* algorithm, further increasing search 

speed. Ref.[19] included angle as a cost function in the 

traditional A* algorithm to find paths with the least number 

of turns, thereby reducing path length and improving 

planning efficiency, particularly for large cargo land 

transportation. Ref.[20] considered the distance to obstacles 

in the heuristic function to improve the path's safety and 

somewhat optimize the overall path length. Ref.[21] 

proposed an ACO algorithm based on bidirectional A* to 

optimize ACO's pheromone updates, accelerating 

convergence and recommending the fastest routes for taxis in 

urban road networks. Ref.[22] added collision cost and 

vehicle heading angle cost to the A* heuristic function, which 

improved path smoothness while ensuring the vehicle's 

kinematic constraints, effectively reducing path length and 

improving driving efficiency. Ref.[23] employed 

bidirectional sector expansion and variable step-size search 

strategies to expand the search space and accelerate the 

search process, further improving the efficiency of path 

planning. Ref.[24] combined the A* algorithm with ACO and 

PSO to design a two-layer, multi-objective path planning 

model and algorithm, which generates shorter, collision-free 

paths while enhancing path safety. Ref.[25] introduced an 

obstacle ratio-optimized heuristic function and combined it 

with a dynamic window method for real-time obstacle 

avoidance, ensuring that the planned path is not only globally 

optimal but also capable of real-time obstacle avoidance, thus 
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guaranteeing path smoothness. 

Although existing methods have achieved breakthroughs 

in certain aspects, such as search efficiency, path length, and 

path smoothness, limitations remain when considering 

multiple performance metrics comprehensively. Therefore, 

designing a comprehensive path planning optimization 

framework that can both improve search efficiency and 

generate smooth, safe paths remains a critical challenge. To 

address this, this paper proposes a novel path planning 

framework, BiA*-MS, which combines the Optimized 

Bidirectional A* Algorithm, Critical Node Retention 

Algorithm, and Minimum Snap Algorithm to overcome the 

issues of low efficiency, redundant path nodes, and 

discontinuities at path corners in traditional path planning 

methods.  

In this framework, we conducted extensive simulation 

experiments and tested it on grid maps of varying sizes. The 

experimental results show that the proposed framework not 

only significantly improves the search efficiency of path 

planning and reduces path length, but also demonstrates 

better performance in terms of path smoothness and safety 

compared to traditional methods. These advantages make the 

framework highly promising for path planning in complex 

environments, particularly for autonomous navigation and 

robotic tasks that require efficient search and smooth paths. 

The main contributions of this paper are as follows: 

1. A multi-stage path planning framework is proposed, 

which optimizes multiple performance metrics in the path 

planning process by combining the Optimized Bidirectional 

A* algorithm, Critical Node Retention algorithm, and 

Minimum Snap algorithm. 

2. The effectiveness of the proposed framework is 

validated through simulation experiments on grid maps of 

varying sizes. The results demonstrate that the framework 

excels in improving search efficiency, reducing path length, 

and ensuring path smoothness. 

3. A new approach to path planning is provided, offering 

valuable insights for future research in the field of robot path 

planning.  

The structure of this paper is organized as follows: Section 

II defines the problem formulation; Section III presents a 

detailed description of the proposed path planning framework 

and its key technologies; Section IV showcases the 

experimental design and analysis of the results; Section V 

summarizes the research findings and outlines potential 

directions for future work.  

II. PROBLEM FORMULATION 

This section presents the problem formulation for path 

planning on a 2D grid map. The formulation includes the map 

modeling, numerical definitions, and optimization objectives.  

A. Map Modeling 

The path planning environment is modeled as a 2D grid 

map, where the map is divided into discrete cells, each 

representing a unit square. The robot is considered as a 

particle of the same size as the unit square. However, to 

account for the robot's physical dimensions and mass in 

real-world applications, a protection radius is added around 

obstacles to ensure safe movement and prevent collisions. A 

20×20 grid map as shown in Fig.1, the green node represents 

the starting node of the robot, while the red node represents 

the target node that the robot needs to reach. The black areas 

indicate the obstacle regions, and the gray areas represent the 

expansion zones of the obstacles. The blue nodes denote the 

nodes that have been expanded by the A* algorithm, and the 

pink nodes represent the final path nodes. Finally, the blue 

polyline represents the trajectory passing through the path 

nodes.  

 

Fig.1 20×20 grid map 

B. Mathematical Formulation of Path Planning 

The path planning task is to find an optimal path from the 

starting node to the target node while avoiding obstacles and 

ensuring that the robot can move smoothly and safely. To 

formalize this path planning problem, it can be defined using 

the following mathematical elements: 

Start Node: The robot's initial position, denoted by 

0 0( , )S x y= , where 
0 0( , )x y  is the center coordinate of 

the grid cell where the start node is located. 

Target Node: The robot's goal position, denoted by 

( , )t tT x y= , where ( , )t tx y  is the center coordinate of the 

grid cell where the target node is located. 

Current Node: The robot's position during its movement 

process, denoted by ( , )n nN x y= , where ( , )n nx y  is the 

center coordinate of the grid cell where the current node is 

located. 

Movement Directions: The robot moves in an 

8-neighborhood manner within the grid map, where it can 

move to adjacent cells either horizontally, vertically, or 

diagonally. 

In A*-based path planning, the cost function is a critical 

element for evaluating the cost of a path and is essential for 

the search for the optimal path. The cost function is defined 

as: 

  ( ) ( ) ( )f N g N h N= +                    (1) 
where ( )f N  represents the estimated total cost of traveling 

from the start node S  through the node N  to the target 

node T , and it is a key metric used in path planning 

algorithms to evaluate node priority. The algorithm will 

prioritize the expansion of the node with the smallest 

( )f N value in order to find the optimal path from the start 

to the goal node. Here, ( )g N represents the actual cost, 

and ( )h N represents the heuristic function. 

Actual Cost ( )g N : Represents the actual path cost from 
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the start node S  to the current node N . Typically, the cost 

for moving from one node to an adjacent node in the 

horizontal or vertical direction is fixed and can be set to 1. 

For diagonal movements, the cost is usually set to 2 . 

Heuristic Function ( )h N : Represents the estimated cost 

from the current node N  to the target node T , aiming to 

predict the remaining cost to reach the goal. Common 

heuristic functions include: 

Manhattan Distance:  

  ( ) t n t nh N x x y y= − + −                    (2) 

Euclidean Distance:  

  2 2( ) ( ) ( )t n t nh N x x y y= − + −                    (3) 

Chebyshev Distance:  

  ( ) max ,t n t nh N x x y y= − −（ ）                   (4) 

Considering that the Euclidean distance closely 

approximates the true straight-line distance between two 

points, the Euclidean distance is chosen as the heuristic 

function. 

C. Optimization Objectives 

The goal of path planning is not only to find a feasible path 

but also to achieve the following optimization objectives:   

Search Efficiency: Optimize the search strategy to reduce 

unnecessary node expansions during the path search, thereby 

improving the overall search efficiency.   

Minimization of Path Total Cost and Node Count: 

Minimize the total cost ( )f N and the number of path nodes 

from the start node to the target node, thereby reducing path 

length, avoiding redundant paths, and ensuring that the robot 

reaches the target in the shortest time.   

Path Smoothness: Ensure that the path is sufficiently 

smooth to reduce sharp turns along the path, thereby ensuring 

continuity in the robot's speed and acceleration at corners. 

To achieve the aforementioned optimization objectives, 

this study proposes the BiA*-MS path planning framework. 

This framework aims to enhance search efficiency, minimize 

redundant nodes along the path, and ensure that the robot 

follows a smooth and continuous trajectory, thereby 

improving the stability of its movement. 

III. BIA*-MS PATH PLANNING FRAMEWORK AND CORE 

TECHNIQUES 

This section introduces the BiA*-MS path planning 

framework and its core techniques, which combine the 

Optimized Bidirectional A* Algorithm, the Critical Node 

Retention Algorithm, and the Minimum Snap Algorithm to 

address issues inherent in traditional path planning methods, 

such as excessive search time, redundant nodes, and 

discontinuities in velocity and acceleration at path corners. 

Specifically, the BiA*-MS framework is optimized through 

the following three components, as illustrated in Fig.2. 

1. Optimized Bidirectional A* Algorithm: This algorithm 

employs a weighted heuristic function and performs 

bidirectional search from both the start and goal nodes, 

thereby reducing unnecessary node expansions and 

improving search efficiency. 

2. Critical Node Retention Algorithm: This algorithm 

optimizes the generated path by extracting critical nodes, 

thereby reducing path redundancy and overall path length. 

3. Minimum Snap Algorithm: During the path planning 

process, the Minimum Snap algorithm is applied to smooth 

the path, ensuring continuous velocity and acceleration 

profiles, which guarantees the robot's motion stability and 

safety.  

A. Optimized Bidirectional A* Algorithm 

The A* algorithm is widely used in path planning but faces 

challenges such as slow search speeds and inaccurate 

heuristics. To improve its efficiency, a bidirectional search 

strategy is introduced. The bidirectional A* algorithm 

expands from both the start and target nodes simultaneously, 

significantly reducing the search space and enhancing 

efficiency. The heuristic function for the forward search, 

based on Euclidean distance, is as in: 

  2 2( ) ( ) +( )
B F B FF F N N N Nh N x x y y= − −                    (5) 

and its cost function is provided in: 

  ( ) ( ) ( )F F F F F Ff N g N h N= +                    (6) 
Similarly, the heuristic function for the backward search is as 

in: 

  2 2( ) ( ) +( )
F B F BB B N N N Nh N x x y y= − −                    (7) 

and its cost function is presented in: 

  ( ) ( ) ( )B B B B B Bf N g N h N= +                    (8) 

where 
FN   and 

BN  represent the current nodes in the 

forward and backward searches, respectively, 

with
FNx and

FNy  denoting the horizontal and vertical 

coordinates of 
FN , and 

BNx and 
BNy representing the 

coordinates of 
B

N . ( )
F F

g N  denotes the actual cost from the 

start node S  to 
FN , and ( )B Bg N  represents the cost from the 

target node T  to 
BN . 

Moreover, in the traditional A* algorithm, the heuristic 

function ( )h N estimates the cost from the current node to 

the target, guiding the search by selecting the next node to 

expand. However, when the heuristic is inaccurate or the 

search space is large, the A* algorithm may expand too many 

nodes, reducing efficiency. 

To address this issue, this paper adopts the optimization 

method proposed by ref.[26], which weights the heuristic 

functions of forward search and backward search through 

exponential functions ( )F Fh N
e and ( )B Bh N

e , respectively. This 

modification enhances the nonlinearity and influence of the 

heuristic function. As a result, larger estimates are obtained 

 

Fig.2  BiA*-MS Overall Framework 
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for nodes farther from the target, prompting the algorithm to 

discard these nodes more quickly and focus on those closer to 

the target. This adjustment accelerates the search process, 

particularly in complex problems with large search spaces.  

The optimized cost functions for the forward and 

backward searches are shown in: 

  ( )
( ) ( ) ( )F Fh N

F F F F F Ff N g N e h N= +                     (9) 
      ( )

( ) ( ) ( )B Bh N

B B B B B Bf N g N e h N= +                   (10) 
The Optimized Bidirectional A* Algorithm are provided in 

Algorithm 1. 

B. Critical Node Retention Algorithm 

The path planned by the Optimized Bidirectional A* 

Algorithm is a polyline path composed of many nodes, where 

not all nodes are crucial. The nodes that control the path 

direction are called critical nodes, which are usually turning 

points or decision points on the path and directly affect the 

effectiveness and safety of the path. The other nodes are 

called redundant nodes, which only serve a connecting role 

without significantly influencing the path's direction. 

In the path planning process, some redundant nodes are 

inevitable, however, optimization strategies can be employed 

to minimize their number, resulting in a more concise and 

efficient path. In this paper, the Critical Node Retention 

Algorithm is used to filter out redundant nodes from the path. 

The algorithm is described as follows: 

Step1: Connect the start node to the next path node 

sequentially, treating each connected node as the current 

node. Check for obstacles between the start and current nodes; 

if obstacles are detected, proceed to Step 2; otherwise, 

continue to Step 1. 

Step2: If obstacles are detected between two nodes, mark 

the previous node as a critical node. Then, check if the current 

node is the target. If it is, proceed to Step 4; otherwise, 

proceed to Step 3. 

Step3: Mark the current node as a critical node, treat it as 

the new start node, and repeat Step 1 with this new start node. 

Step4: End the process and output the critical path nodes. 

The intuitive process of the Critical Node Retention 

Algorithm is illustrated in Fig.3. In Fig.3(a), the path 

obtained using the Optimized Bidirectional A* Algorithm is 

shown, but the path contains numerous redundant nodes. To 

simplify the path and make it clearer, the Critical Node 

Retention Algorithm can be applied to filter out redundant 

nodes. After filtering, the yellow nodes in Fig.3(b) are 

identified as critical nodes. By connecting these critical nodes, 

a critical path is formed, as shown by the red path in Fig.3(c). 

Compared to Fig.3(a), the critical path obtained using the 

Critical Node Retention Algorithm not only more clearly 

represents the critical nodes of the path but also has a shorter 

path length. 

 

(a)  (b) (c) 
Fig.3  The Process of the Critical Node Retention Algorithm 

 

C. Minimum Snap Algorithm 

In robot path planning, the paths generated by the Optimized 

Bidirectional A* algorithm and the Critical Node Retention 

algorithm are typically piecewise linear, as shown in Fig.2. 

These paths often exhibit discontinuities in velocity, 

acceleration, and higher-order derivatives at the corners, 

which violate the robot's kinematic constraints, potentially 

leading to instability in robot motion and excessive energy 

consumption. To address this issue, the BiA*-MS path 

planning framework incorporates the Minimum Snap 

algorithm, which further refines the key path into a smooth, 

higher-order continuous trajectory. This optimization 

eliminates discontinuities in higher-order derivatives, such as 

velocity and acceleration, at the turns, ensuring better 

alignment between the path and the robot's actual motion, 

thereby achieving more efficient and higher-quality path 

planning. 

 

The discrete critical path nodes obtained through the 

Critical Node Retention algorithm ( including the start node 

S and the goal node T ) are defined as control points    

 1 2, , , kP P P P= . The core idea of the Minimum Snap 

algorithm is to construct a piecewise polynomial trajectory 

( )Q t using these control points, which is composed of 1k −  

segments. Each sub-trajectory ( )iQ t represents the path 

between two adjacent control points iP  and 
1iP+ , and is 

described by a polynomial of degree n : 
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 In this expression, ija represents the polynomial 

coefficients to be optimized, and it  and 1it +  are the start and 

end times of the sub-trajectory ( )iQ t , respectively. The jerk 

and snap refer to the third and fourth derivatives of the 

trajectory, respectively, and are mathematically expressed as: 

 
3

3

( )id Q t
jerk

dt
=                               (12)

  
4

4

( )id Q t
snap

dt
=                               (13)

 

The objective function of the Minimum Snap algorithm 

can be defined as: 
1 1

41 1
2 2

4
1 1

( )
  ( )

i i

i i

k kt t
Ti

t t
i i

d Q t
min J snap dt dt a Ha

dt

+ +
− −

= =

= = =       (14)                          
 

where the vector  

 

 contains the coefficients of all the 

piecewise polynomial segments, and  is the positive 

definite quadratic objective function matrix. By 

minimizing the squared integral of the       , the abrupt changes 

in the higher-order derivatives of the trajectory can be 

reduced, thereby improving its smoothness.  

In addition, to ensure continuity of the trajectory in terms 

of position, velocity, acceleration, and      , the following 

constraints must be satisfied while minimizing the objective 

function: First, at the time instances  
  

 and      , the trajectory 

must pass through the control points       (the start node) and                     

(the goal node), respectively, with zero velocity, 

acceleration, and jerk. This can be expressed as: 2 3

1 1 1 1 1 1

1 1 1 2 3

2 3

1 1 1

1 2 3

( ) ( ) ( )
( ) , 0, 0, 0,

( ) ( ) ( )
( ) , 0, 0, 0.k k k k k k

k k k

dQ t d Q t d Q t
Q t P

dt dt dt

dQ t d Q t d Q t
Q t P

dt dt dt

− − −
−

= = = =

= = = =
    (15)                          

 
Secondly, the trajectory ( )Q t  must pass through all the 

control points  1 2, , , kP P P P=  and maintain positional 

continuity at the connection points 
1it +  between any adjacent 

sub-trajectories. This can be expressed as: 

1 1( ) ,   ( ) ,     1,2, , 1i i i i i iQ t P Q t P i k+ += =  = −          
(16)                          
Additionally, at the connection points    between any adjacent 

sub-trajectories, the trajectory      must maintain continuity in 

velocity, acceleration, and jerk. This can be expressed as: 

1 1 1( ) ( )
,    1,2,3  1,2, , 2

j j

i i i i

j j

d Q t d Q t
j i k

dt dt

+ + += =  = −     (17)              
 

By combining the objective function with the constraints, 

the Minimum Snap algorithm can be formulated as a 

quadratic programming problem:   

. .   

Tmin a Ha

s t Aa b




=                             (18)              
 

 

The matrix      contains the linear constraint conditions for 

position, velocity, acceleration, and jerk, while the vector 
includes the corresponding constraint values. By solving the 

quadratic programming problem, the optimized polynomial 

coefficients  can be obtained, thereby constructing a 

piecewise polynomial trajectory         that satisfies smoothness 

and higher-order continuity.  

 
IV. SIMULATION AND ANALYSIS OF THE BIA*-MS PATH 

PLANNING FRAMEWORK 

To validate the effectiveness of the BiA*-MS path 

planning framework, simulation experiments were conducted 

using MATLAB 2021 on a Windows 10 operating system 

with an i5-9300 processor. The experiments were designed to 

compare and analyze three modules: the Optimized 

Bidirectional A* algorithm, the Critical Node Retention 

algorithm, and the Minimum Snap algorithm. The evaluation 

was performed in four grid maps of different scales (40×40, 

60×60, 80×80, and 100×100) to assess the performance of 

each module in terms of path planning efficiency, path 

length, and smoothness. 

A. Simulation and Analysis of the Optimized Bidirectional 

A* Algorithm 

In the BiA*-MS path planning framework, the Optimized 

Bidirectional A* algorithm serves as the initial module of the 

entire framework, playing a key role in improving search 

efficiency and optimizing the path, as it is responsible for 

generating the initial path. To evaluate the performance of the 

Optimized Bidirectional A* algorithm, experiments were 

conducted comparing it with the traditional A* and 

bidirectional A* algorithms, as shown in Fig.4.  

By comparing Fig.4(a) - (l), it is evident that the Optimized 

Bidirectional A* algorithm significantly reduces the search 

area and minimizes the number of path turns, resulting in a 

more concise path compared to both the traditional A* 

algorithm and the bidirectional A* algorithm. This highlights 

its superiority in both search efficiency and path 

optimization.  

B. Simulation and Analysis of the Critical Node Retention 

Algorithm 

The Critical Node Retention Algorithm is the second 

module of the BiA*-MS path planning framework. Its 

primary function is to filter out redundant nodes in the path, 

retaining only the critical path nodes. This reduces the total 

number of nodes, resulting in a more concise and efficient 

critical path, thereby addressing the issue of path length in the 

Optimized Bidirectional A* Algorithm. 

As shown in Fig.5, compared to the paths generated by the 

traditional A*, Bidirectional A*, and Optimized 

Bidirectional A* algorithms, the critical paths filtered by the 

Critical Node Retention Algorithm demonstrate superior 

performance in terms of both total node count and path 

length. The algorithm significantly  reduces  the   number of  

nodes and shortens  the  

    

(a) Traditional A* Path    

H

snap

jerk

1t kt

kP 1P

1it +

( )Q t

A

b

a

( )Q t

a
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(b) Bidirectional A* Path  

  

 

 

(c) Optimized Bidirectional A* Path 

Fig.4 Three Algorithms on Four Grid Maps of Varying Scales 

path length, resulting in a more concise and efficient path. To 

visually highlight the advantages of the Critical Node 

Retention Algorithm, a bar chart is used to compare the 

performance of each algorithm in terms of path node count 

and path length, with the results shown in Fig.6. 

Fig.6 illustrates that the critical paths filtered by the 

Critical Node Retention Algorithm have fewer nodes and 

shorter path lengths compared to those generated by the A*, 

Bidirectional A*, and Optimized Bidirectional A* algorithms. 

Therefore, introducing the Critical Node Retention 

Algorithm into the BiA*-MS path planning framework can 

further optimize path length, addressing the limitations of the 

Optimized Bidirectional A* in this regard, and thereby 

achieving better path planning results. 

 

 

 

 

 

Fig.5 Critical Path on Four Grid Maps of Varying Scales 

C. Simulation and Analysis of the Minimum Snap 

Algorithm 

The Minimum Snap algorithm is the final module in the 

BiA*-MS path planning framework. Its primary function is to 

smooth the key path, generating the final path that satisfies 

kinematic constraints. Since the optimized path generated by 

the Minimum Snap algorithm is the final output of the 

BiA*-MS path planning framework, its performance directly 

determines the overall performance of the entire framework.   

 

(a) Total Nodes 

 

(b) Path Length 
Fig.6 Comparison of Total Nodes and Path Length Across 

Algorithms on Four Grid Maps of Varying Scales 

Therefore, the experiments in this section not only validate 

the performance of the Minimum Snap algorithm but also 

serve as a verification of the overall performance of the 

BiA*-MS path planning framework. 

To validate the performance of the Minimum Snap 

algorithm, a set of comparative experiments is designed using 

the Bézier path smoothing method. The Bézier algorithm 

generates smooth curves through linear interpolation and 

polynomial equations. The basic principle is to first connect 

the control points to form a control polygon, then use the 

Bézier curve formula to approximate this polygon, thereby 

generating the final Bézier curve. For k  critical path nodes 

(control points) 
1 2, ,..., kP P P , the Bézier curve is defined as: 

 1

1

1
( ) (1 ) ,    0,1

1

k
k i i

i

i

k
B t t t P t

i

− −

=

− 
= −  − 

         (19)               

In the equation, t  is the time parameter,          is the 

binomial coefficient, and iP  is the i -th critical path node. 

The Bézier curve algorithm only depends on the positions of 

the control points to determine the path shape, without 

explicitly specifying which points the curve must pass 

through. This imposes certain limitations on its ability to 

avoid obstacles at the critical nodes. Therefore, to improve 

the obstacle avoidance capability of the smooth path, the 

critical path nodes, the quarter points between every two 

critical nodes, and their midpoints are selected as control 

points for both the Minimum Snap and Bézier algorithms in 

the comparative experiments. Since the generated smooth 

path is both the optimized result of the Minimum Snap 

algorithm and the final output of the BiA*-MS framework, 

the path smoothed by the Minimum Snap algorithm is 

defined as the BiA*-MS path. Similarly, the path smoothed 

by the Bézier algorithm is defined as the BiA*-Bézier path. 

The smooth paths generated by both algorithms based on the 

critical path in grid maps of different scales are shown in 

Fig.7. 
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(a) 40×40 (b) 60×60 

  

(c) 80×80 (d) 100×100 

Fig.7 Path Optimization Results of Bezier and Minimum Snap 

Algorithms Using Critical Nodes and Midpoints as Control 

Points on Four Grid Maps of Varying Scales 

By comparing the two smoothed paths, it can be observed 

that the Bézier algorithm is highly dependent on the number 

and distribution of control points, resulting in relatively 

limited path optimization, especially in terms of obstacle 

avoidance performance. In contrast, the Minimum Snap 

algorithm, with its continuity constraints, demonstrates 

superior performance in both smoothness and obstacle 

avoidance, generating more continuous and safer paths that 

better meet practical requirements. 

In conclusion, the Minimum Snap algorithm outperforms 

the Bézier algorithm in path optimization, showcasing 

greater flexibility and adaptability. This further highlights the 

advantages of the BiA*-MS framework: by combining the 

optimized Bidirectional A* algorithm, the Critical Node 

Retention algorithm, and the Minimum Snap algorithm, it not 

only enables faster generation of shorter and more concise 

paths but also achieves efficient path smoothing optimization, 

meeting the practical application needs in complex 

environments. 

V. CONCLUSION 

This paper proposes a new path planning framework, 

BiA*-MS, which combines the optimized Bidirectional A* 

algorithm, the Critical Node Retention algorithm, and the 

Minimum Snap algorithm. The framework aims to address 

several issues in traditional path planning algorithms, 

including long search times, redundant path nodes, excessive 

turns, and discontinuities in velocity and acceleration at path 

corners. First, BiA*-MS improves search efficiency by 

optimizing the Bidirectional A* algorithm, effectively 

reducing path search time. Next, the Critical Node Retention 

algorithm filters path nodes to generate a critical path, 

reducing both path length and the number of turns, further 

simplifying the path. Finally, the Minimum Snap algorithm 

smooths the path, ensuring continuity in position, velocity, 

and acceleration at the turns, thus improving the feasibility 

and safety of the path. Simulation experimental results 

demonstrate that the BiA*-MS framework offers significant 

advantages in terms of path search efficiency, path 

optimization quality, and obstacle avoidance performance. It 

generates smoother, more continuous, and safer paths, 

meeting the path planning requirements in complex 

environments. This framework not only enhances the 

efficiency and reliability of path planning but also provides 

an effective solution for real-world applications.  
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