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Abstract— In order to accurately and rationally predict the 

future trajectories of vehicles, a Fusion Attention and Physics 

Correction Long Short-Term Memory Network (FAPC-LSTM) 

model is proposed. It can improve the accuracy and stability of 

self-driving car trajectory prediction. Traditional methods 

based on physical models rely on complex parameters and are 

difficult to adapt to complex scenarios. And purely data-driven 

models (e.g., LSTM) may output predictions that violate 

physical laws. FAPC-LSTM integrates vehicle state information 

through an encoding-decoding structure, utilizes an attention 

mechanism to capture key timing features, and dynamically 

constrains the prediction results through a physical correction 

layer. The experiments are based on the nuScenes dataset and 

compare the performance of the purely physical model, 

traditional LSTM and FAPC-LSTM. The results show that 

FAPC-LSTM significantly outperforms the comparison model 

in both speed and position prediction. Especially, it exhibits 

lower cumulative error and higher stability in long-term 

prediction, which verifies its effectiveness in practical complex 

driving scenarios. 

 
Index Terms— LSTM; Trajectory prediction; attention 

mechanism; vehicle engineering; physical correction 

I. INTRODUCTION 

  Accurate and reasonable prediction of vehicle trajectories 

can effectively improve the safety of autonomous vehicles. 

The goal of vehicle trajectory prediction is usually to estimate 

the trajectory at a specific time point or over a certain period. 

To achieve this, researchers have used various methods and 

models. These research approaches can be divided into two 

main categories. 

The first category is physics-based vehicle trajectory 

prediction. This method uses mathematical formulas or 

kinematic models to build physical models of vehicle 

trajectories. The second category is data-driven prediction 

models. These models mainly rely on neural networks. They 

learn the patterns of vehicle trajectory changes by training 

algorithms on large amounts of historical data. Ref.[1] 

summarizes multiple vehicle trajectory prediction models. It 

includes both physics-based and data-driven approaches. It 

also compares the advantages, disadvantages, and suitable 

scenarios of these methods. 

In physics-based motion prediction research, some scholars 

focus on vehicle dynamic behavior. They build prediction 

models based on dynamics to describe vehicle motion [2-3]. 

Ref.[4] combines Kalman filtering and probabilistic 

simulation for short-term motion prediction. Experimental 

results show that this method achieves high accuracy in 

short-term prediction. However, it is not suitable for 

long-term motion prediction.For long-term motion 

prediction, Ref.[5] proposes a state estimation method that 
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combines constant yaw rate and acceleration models. It also 

integrates trajectory prediction based on maneuver 

recognition. Compared to the method in Ref.[4], this 

algorithm shows better prediction accuracy. However, the 

model involves many parameters, which increases 

complexity in practical applications. 

In recent years, with the emergence of new technologies, 

neural networks have been widely used in state prediction. 

By training on large amounts of data, the prediction 

performance of neural networks has improved significantly. 

Vehicle trajectory prediction relies on massive amounts of 

driving data. Because of this, neural network-based trajectory 

prediction methods have gained increasing attention from 

researchers. For example, ref.[6] proposed a deep 

feedforward neural network prediction framework. 

Experiments on the NGSIM driving dataset showed that 

driver behavior, dynamic environment features, and 

historical trajectory data are closely related to prediction 

results. However, the network structure lacks effective 

sequential modeling, limiting it to fragmented trajectory 

prediction. Ref.[7] introduced a time-enhanced 

encoder-decoder network. It integrated real-time vehicle 

motion parameters and road topology, using a graph attention 

mechanism for spatial feature extraction. This method shows 

strong robustness but depends on high-definition maps, 

which are costly to update. Performance degrades when map 

data is incomplete. Ref.[8] used LSTM network to predict 

lateral displacement and longitudinal speed. Results showed 

improved accuracy compared to earlier methods, but the 

average error remained high. 

In summary, physics-based or trajectory-based prediction 

methods often require many constraints and parameters. 

They struggle to provide accurate predictions in complex 

real-world driving scenarios. Additionally, model complexity 

limits their practical use. In contrast, data-driven neural 

networks show greater potential in handling dynamic driving 

environments. By learning from large datasets, they can 

automatically identify and predict vehicle behavior with 

better adaptability and higher accuracy, especially in 

complex scenarios. Despite progress, neural network-based 

methods still face challenges. For example, traditional 

LSTMs often fail to capture long-term dependencies, 

sometimes producing physically unrealistic predictions. As 

seen in these studies, vehicle trajectory prediction algorithms 

are still evolving. Further research is needed to improve 

prediction accuracy. 

To address the above issues, Fusion Attention and Physics 

Correction Long Short-Term Memory Network 

(FAPC-LSTM) model is proposed. The model adopts an 

encoder-decoder structure. Vehicle state information is used 

as input. Historical state features and control commands 

during driving are combined for prediction. The trajectory is 

further refined by the physics-based correction layer. 

Fusion Attention and Physics Correction Long Short-Term 

Memory Network model 

Linlin Lang 
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II. TRAJECTORY PREDICTION MODEL 

The input of the proposed model is defined as 

, which consists of control commands 

and dynamic observation parameters. Here,  includes the 

acceleration command , braking command , and 

steering command .  contains the front wheel steering 

angle , longitudinal velocity , lateral velocity , yaw 

angle , and vehicle coordinates . The model outputs 

the longitudinal velocity , lateral velocity , yaw angle , 

and vehicle coordinates . Although high-frequency 

sampling can be used to obtain data, the vehicle's dynamic 

behavior is affected by multiple interacting physical factors 

in complex driving scenarios such as low-friction roads or 

emergency obstacle avoidance. The vehicle's motion state is 

not only related to historical control commands and 

perception data, but must also strictly follow vehicle 

dynamics laws. 

Therefore, based on the structure in Ref. [9], the proposed 

model introduces an explicit constraint layer based on vehicle 

dynamics. The neural network output is corrected in real-time 

through physical equations, achieving dual assurance of 

data-driven prediction and physical constraints. The model 

architecture is shown in Figure 1. The architecture consists of 

five modules: multi-source data preprocessing, LSTM 

encoder, attention mechanism, fully connected layer, and 

physics-based correction module. The multi-source data 

preprocessing module is responsible for systematically 

organizing raw collected data and converting it into a format 

directly readable by the model. The LSTM encoder processes 

various input factors to extract temporal context features and 

obtain feature information. The attention mechanism learns 

attention coefficients and feature information, focusing on 

key temporal features such as deceleration changes before 

emergency braking and steering angle saturation. The fully 

connected layer obtains filtered feature information and 

provides preliminary prediction results. The physics-based 

correction module applies dual constraints to the predicted 

values based on prior knowledge of vehicle dynamics. 

 
Fig1. Fusion Attention and Physics Correction Long 

Short-Term Memory Network 

A. Multi-source data preprocessing 

The system state data obtained from autonomous vehicles 

requires data processing. The primary objectives of data 

preprocessing are noise elimination, temporal alignment, and 

ensuring physical consistency. Raw data often contains 

significant noise, missing values, and temporal misalignment 

caused by sensor delays, which directly affect model training 

and prediction accuracy. Therefore, data cleaning and 

anomaly handling are essential.As the foundational module 

of the framework, data preprocessing standardizes raw 

heterogeneous data to provide reliable input for subsequent 

analysis. The processing methods are as follows: 

Obvious outliers are excluded. For control command data, a 

threshold filtering method based on physical limits is applied. 

According to the performance boundaries of vehicle 

powertrain systems proposed in Ref.[10], the maximum 

capability of motors and braking systems typically does not 

exceed these ranges. Therefore, abnormal acceleration 

commands  exceeding the threshold of 3 m/s² are 

identified as communication interference and removed. For 

steering commands , a saturation limit strategy is 

implemented based on the mechanical constraints of the 

steering mechanism, where the corresponding steering angle 

is restricted to ≤0.6 rad. 
Format-invalid data are discarded. Format errors refer to 

cases where data does not conform to predefined type 

requirements. When a dataset should contain numerical 

values, non-numerical entries are considered invalid. For 

example, vehicle position data ( ) should be time-series 

numerical values, and each sample must be convertible to a 

floating-point number. Thus, invalid entries such as "N/A" 

are removed. 

Missing data are imputed. A dual-strategy approach is 

adopted for missing data: (i) Incomplete records are removed 

when the missing rate is low and temporal continuity is 

critical; (ii) Statistical imputation techniques are applied to 

reconstruct missing values based on observed data. Mean 

imputation is selected as the primary method due to its ability 

to maintain parameter distribution stability. Cross-validation 

is performed to ensure the physical plausibility of imputed 

values. 

Temporal synchronization is calibrated. To address timing 

misalignment between control signals (e.g. ) and 

state parameters (e.g. ), signal synchronization 

optimization is conducted. Considering the inherent CAN 

bus transmission delay (~50 ms), a time-offset compensation 

mechanism is introduced. Specifically, the velocity  at 

time t is mapped to the acceleration command  at time t-5, 

based on vehicle dynamics analysis, where the current 

motion state is essentially the cumulative effect of prior 

control commands. 

 

B. LSTM encoder 

As an important derivative architecture of recurrent neural 

networks (RNN) [11], the core innovation of LSTM is the 

introduction of a gating mechanism, which effectively 

mitigates the problems of gradient vanishing and gradient 

explosion that are prevalent in the training process of 

traditional RNN by dynamically adjusting the direction of 

information flow. As shown in Fig. 2, the LSTM unit consists 

of three key gate structures-input gate , oblivion gate , and 

output gate . These gating units work in concert to achieve 

fine-grained control of the memory state. At each time step t 

of the temporal data processing, the LSTM updates the 

internal state through the following mathematical process: 
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       (1) 

      (2) 

     (3) 

             (4) 

      (5) 

            (6) 

 
Fig. 2 Schematic diagram of LSTM network 

In Eqs. (1) to (6), , ,  denote the output features of the 

forgetting gate, the input gate, and the output gate at time t, 

respectively;  is the candidate memory state feature; , 

, ,  are the weight matrices of the forgetting gate, the 

input gate, the coupled forgetting gate, and the output gate, 

respectively; is the hidden state feature at time ; 

 is the  activation function; b_f, b_i, b_C, and 

b_o are the bias coefficients of the corresponding gating 

structure. sigmoid activation function; , , ,  are the 

bias coefficients of the corresponding gating structures, 

respectively. The FAPC-LSTM proposed in this paper uses 

an LSTM network to encode the vehicle history state 

information to extract the features, and after the extraction, 

the network computes to obtain the output of the hidden layer 

at time t, . 

 

C. Attention mechanisms 

The attention mechanism was first identified in the 1990s as a 

signal processing mechanism in human vision research. It is 

implemented as a specialized structure in machine learning 

models, primarily used to automatically learn and compute 

the influence of input data on output data [12].When 

integrated into LSTM models, the attention mechanism 

enables the system to focus on more valuable information 

while disregarding irrelevant data. As the core module for 

temporal feature selection, the attention mechanism 

processes the temporal feature matrix  output from 

the LSTM encoder, where  represents the timesteps and  

denotes the hidden layer dimension.First, the input features 

are linearly transformed through learnable weight matrices 

 and  to generate query vector  and key vector : 

          (7) 

Subsequently, the attention coefficient matrix  for time 

step t is computed by scaling the dot product attention, and its 

computation process introduces a normalization factor  to 

mitigate the gradient vanishing problem: 

             (8) 

This mechanism can adaptively focus on historical features 

that are closely related to the current dynamic response. For 

example, in emergency braking scenarios, attention 

coefficients are significantly enhanced for longitudinal 

velocity  within the short time window before brake 

commands take effect. This captures the critical transition 

process from brake force transmission to tire slip ratio 

changes. Similarly, when the steering angle  reaches its 

mechanical limit , the attention mechanism strengthens 

the temporal correlation between lateral velocity  and yaw 

angle  during steering saturation. This reflects the dynamic 

characteristics under the kinematic constraints of the steering 

mechanism. Finally, the weighted context vector  is passed 

to downstream networks through feature fusion along with 

the current hidden state : 

              (9) 

Further through the fully connected layer, obtain the 

preliminary predicted state vector  

 

D. Physical layer correction 

In the FAPC-LSTM model, the physics correction layer is 

designed to combine vehicle dynamics principles with 

data-driven prediction results. Physical consistency of 

predictions is achieved through explicit kinematic 

constraints.The layer takes the preliminary predicted state 

vector  from the fully-connected layer as input. 

Longitudinal velocity  and yaw angle  are dynamically 

adjusted to output physically plausible corrected states. The 

detailed design is described below: 

For vehicle longitudinal velocity , longitudinal 

acceleration  is determined by both acceleration and 

braking commands. According to Newton's second law, the 

longitudinal force balance equation is expressed as: 

           (10) 

         (11) 

Here,  represents the vehicle mass, and  denotes the 

resistance force, which includes rolling resistance, air 

resistance, and grade resistance. The resistance force is 

related to external factors such as friction coefficients and 

road gradients, and the corresponding parameters can be 

adjusted according to actual driving conditions.  represents 

the net driving force, which is determined by both the 

acceleration command  and braking command , with  

denoting the powertrain efficiency. The neural network's 

predicted longitudinal velocity  is corrected to  as 

follows: 

       (12) 

In eq.(12),  represents a learnable parameter that 

automatically adjusts the strength of physical compensation 

during training, with  denoting the timestep duration. 

The yaw angle Ψ: The yaw angle is influenced by both 
steering mechanism kinematics and tire lateral forces. 

According to the single-track model [13], the yaw rate is 

primarily determined by the front wheel steering angle  and 

longitudinal velocity : 

              (13) 

Among them, L is the wheelbase of the vehicle, which can be 

adjusted according to the vehicle's own conditions. Thus, the 

yaw angle  output by the neural network is corrected to 

eq(14) 

       (14) 

In eq.(14), is a learnable parameter used to balance 

data-driven prediction and physical constraints. 
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III. TESTS AND ANALYSIS OF RESULTS 

A. Dataset and Implementation Details 

The nuScenes dataset [14], a large-scale autonomous driving 

public dataset released by Motional, was used in this study. 

The data collection vehicles were equipped with multiple 

sensors, including cameras, LiDAR, millimeter-wave radar, 

inertial measurement units (IMU), and GPS. A total of 15 

hours (242 km) of driving data were collected in Singapore 

and Boston, which are known for their dense traffic and 

complex scenarios. The traffic scenarios were divided into 

1000 segments, with each segment lasting 20 seconds at a 

sampling frequency of 2 Hz. For the proposed prediction 

model, vehicle trajectories were predicted for 6 seconds 

based on 2 seconds of historical data. The experiments were 

conducted on a computer equipped with an NVIDIA 

RTX3060 GPU. The PyTorch deep learning framework was 

employed, with the Adam optimizer used during training. 

The learning rate was set to 0.0001. 

 

B. Evaluation indicators 

The following metrics were adopted to evaluate the 

prediction model: 

 

(1) Mean Absolute Error (MAE). The MAE measures model 

accuracy by calculating the average absolute deviation 

between predicted and true values: 

         (15) 

In eq.(15),  represents the predicted value of the -th 

data point,  denotes the corresponding true value, and  

is the sample size. 

 Due to its linearity, MAE shows strong robustness against 

outliers and directly reflects the overall prediction deviation 

level. In vehicle state prediction tasks, MAE is commonly 

used to evaluate control commands because its uniform error 

penalty aligns with real-world stability requirements, 

preventing evaluation distortion from extreme errors. 

 

(2) Root Mean Square Error (RMSE). The RMSE is 

computed as the square root of the average squared errors: 

      (16) 

The squared term amplifies larger errors, making RMSE 

more sensitive to significant deviations. In autonomous 

driving systems, RMSE is typically applied to safety-critical 

parameters. Its error amplification effect helps identify 

potentially hazardous states and prioritizes high-risk error 

reduction during model optimization. 

 

(3) Cumulative Horizon Error (CHE). The CHE assesses 

error propagation in long-term predictions by summing errors 

across all time steps in a prediction window: 

        (17) 

This metric directly indicates model stability over extended 

periods, particularly useful for long-term state estimation. 

Diverging errors (e.g., increasing speed errors during 

emergency braking) lead to significantly higher CHE values. 

By analyzing CHE's temporal distribution, model 

improvements can focus on enhancing long-term temporal 

dependency capture. 

Analysis of results 

To comprehensively evaluate the model's prediction 

capability, comparative experiments were conducted on a test 

set covering complex road conditions including urban streets 

and highways. Three models were compared: a pure 

physics-based model (Kalman filter + single-track model) 

[15], a pure data-driven model (traditional LSTM) [16], and 

the proposed FAPC-LSTM model. 

For vehicle state prediction tasks, the prediction errors of 

state vector  were calculated in three groups based on 

physical dimension consistency and functional module 

relevance principles. This grouping was implemented to 

enhance the interpretability and practicality of evaluation 

metrics. The performance comparison of these grouped 

metrics, obtained through testing with trained models, is 

presented in Table 3-1. 

 

Table 1 Evaluation of form state prediction results for 

different models 

 unit 
Evaluatio

n metrics 

physica

l model 
LSTM 

FAPC-

LSTM 

 m/s 

MAE 0.25 0.18 0.12 

RMSE 0.38 0.27 0.26 

CHE (5s) 6.42 4.25 2.15 

 rad 

MAE 0.12 0.08 0.05 

RMSE 0.20 0.14 0.09 

CHE (5s) 1.58 1.02 0.48 

 m 

MAE 0.45 0.28 0.18 

RMSE 0.67 0.42 0.25 

CHE (5s) 8.95 5.63 3.12 

The experimental results show that the pure physics-based 

model achieved significantly higher CHE (1.82) in the 

control command group compared to FAPC-LSTM (0.58), 

indicating its limited capability in temporal modeling of 

discrete commands. The FAPC-LSTM demonstrates superior 

performance over both the traditional LSTM and pure 

physics-based models across all prediction groups. 

Fig.3 presents the cumulative error progression of lateral 

velocity  and longitudinal velocity  predictions over a 

5-second horizon for the three models. The x-axis represents 

prediction duration while the y-axis shows cumulative error. 

The blue and red curves correspond to the traditional LSTM 

and pure physics-based model respectively, with the green 

curve representing FAPC-LSTM. The pure physics-based 

model shows smaller initial errors but exhibits significant 

error growth after 3 seconds. Similarly, the traditional LSTM 

demonstrates poor stability in long-term predictions. In 

contrast, the FAPC-LSTM maintains the most gradual error 

growth in later stages, outperforming both comparison 

models. 

 
Fig. 3 Comparison of cumulative errors of the three models 

 

The experimental results demonstrate that the FAPC-LSTM 

model achieves better accuracy and stability in vehicle state 

prediction tasks. The model effectively captures dynamic 

changes in vehicle state characteristics while avoiding 

physically unrealistic predictions that may occur with 

traditional models. Tests show that FAPC-LSTM maintains 
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superior stability in long-term predictions, with significantly 

slower error growth compared to other models. This stability 

stems from the dual assurance of combining data-driven 

learning with physical constraints, enabling more reliable 

trajectory predictions for autonomous driving systems in 

complex scenarios. 

CONCLUSION 

The FAPC-LSTM model is proposed to address the 

limitations of traditional vehicle trajectory prediction 

methods in terms of accuracy and physical consistency. By 

integrating data-driven learning with physical constraints, the 

model is shown to outperform both pure physics-based 

models and traditional LSTM across multiple evaluation 

metrics (MAE, RMSE, CHE), particularly demonstrating 

more gradual error growth in long-term predictions. The 

attention mechanism enhances the model's ability to capture 

critical temporal features, while the physics correction layer 

ensures predictions comply with vehicle dynamics principles. 

The superior performance of FAPC-LSTM provides reliable 

support for safety-critical decision making in autonomous 

driving systems. Future research could further optimize 

parameter adaptability and explore generalization 

capabilities in more scenarios. 
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