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Abstract—In the field of target detection and image classifica

tion, although hardware accelerators for CNN and Transforme

r are widely available, accelerators specifically designed for Tra

nsformer-CNN hybrid networks are relatively rare. Due to the 

high computational complexity, storage requirements, memory 

bandwidth limitations, and parallel computation difficulties of 

hybrid networks, the implementation of the model on hardware

 is challenging. To address these issues, this study proposes a de

dicated hardware accelerator with a configurable Systolic Arra

y computational architecture, on the one hand, designing an Im

g2col module for converting 3D feature maps into 2D matrices, 

and utilising the Systolic Array to implement convolution opera

tions with different sizes as well as matrix multiplications, whic

h is specifically designed to accelerate the inference of Transfor

mer-CNN hybrid networks. On the other hand the accelerator i

s extremely flexible and configurable, parametrically configuri

ng the Systolic Array according to computational needs ensures

 that its performance is fully exploited, while the use of on-chip 

buffers for storing maps, weight data, and intermediate results 

reduces off-chip memory accesses and power consumption, and 

improves data reusability. 

Our well-designed accelerator was tested on Xilinx Zynq, an

d the experimental results show that the accelerator exhibits exc

ellent performance in both CNN and Attention Mechanism com

putation, with an output of up to 608.6 GOPS/W. The aim of thi

s study is to build efficient hardware accelerators that utilise eff

icient computational units and memory structures for Transfor

mer-CNN hybrid network to accelerate the processing and impr

ove the performance of CNN and Transformer deployed on har

dware. 

 
Index Terms—FPGA, Transformer, CNN, Systolic Array. 

 

I. INTRODUCTION 

Over the past few years, Transformer has achieved 

remarkable results in the field of Natural Language 

Processing (NLP). As an extensible framework, Transformer 

provides effective solutions for many complex NLP tasks, 

such as machine translation, text summarisation, and 

question and answer systems. However, the application of 

Transformer is not limited to the field of NLP, but in the field 

of computer vision, Transformer is also becoming an 

important new tool for solving various image processing 

tasks[1]. 

CNN[2] and ResNet[3], which have been dominant in 

computer vision tasks, focus on the extraction of local 

features of an image, which makes it difficult to capture 
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global information with their limited receptive fields[4]. 

While Transformer's Multi-Head Attention (MHA) captures 

the relationship between global features through Q, K, and V 

matrices to obtain richer feature information [5], it is relatively 

weak in processing local information. Therefore, more and 

more researchers began to explore how to combine CNN and 

Transformer, and Transformer-CNN hybrid neural networks 

can complement each other's advantages[6], and the 

emergence of these hybrid models brings new ideas and 

methods to the field of computer vision, and also provides a 

new way to realize more efficient and accurate image 

processing tasks[7]. However, due to the significant difference 

between the two computational approaches[8], most of the 

accelerators accelerate CNN or Transformer alone, and 

relatively little research has been done on hardware 

accelerators specifically designed for CNN-Transformer 

hybrid networks. Therefore, in this paper, we design an 

efficient hardware accelerator for DETR, a hybrid network, 

using the img2col method to implement 

convolution-to-matrix multiplication mapping, and the 

Systolic Array to implement different types of convolution 

and matrix multiplication operations, which significantly 

improves the flexibility of convolution computation[9] and 

speed. 

The main work of this paper is as follows： 

1） We propose an innovative Systolic Array architecture 

that contains two different computational modes designed to 

provide acceleration for Transformer-CNN hybrid networks. 

Through the designed mapping method, we successfully 

transform the two computational processes, Convolution and 

Transformer, into matrix multiplication on Systolic Array for 

efficient computational processing. 

2）The accelerator we designed is highly flexible and 

configurable, dynamically adjusting the number and 

arrangement of the processing elements (PEs) in the Systolic 

Array according to the size of the input matrix, ensuring that 

it achieves its maximum performance when performing 

parallel computing tasks. It also implements operators 

commonly used in neural networks such as Add, 

Maxpooling, and Concat. 

3）This accelerator achieves a peak throughput of 608.6 

GOP/S using Int8 computing. The accelerator is 5.4 times 

more energy efficient compared to CPUs, 1.45 times more 

efficient compared to GPUs, and 5.22 times more efficient in 

terms of speed and energy efficiency compared to existing 

accelerators. 
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II. RELATED WORK 

Systolic Array usually has two forms: weight-fixed and 

output-fixed, as shown in Fig. 1. For weight-fixed SA, the 

weight data is preloaded into the PE, and then the input data 

is fed into the Systolic Array from the left side and 

propagated to the right so that the intermediate result of the 

operation is propagated from the top to the bottom[10]. For the 

output-fixed type SA, the input data is shifted in a consistent 

manner, one position per clock cycle. Unlike the 

weight-fixed SA, the weight data of the output-fixed SA is 

not preloaded and stored statically, but flows through the PE 

like the input data, and the intermediate results of the 

computation are accumulated inside the PE to output the final 

result. 

 

PE PE PE

PE PE PE

PE PE PE  
Fig. 1. Weight-stational SA (left), Output-stational SA(right). 

 

In this paper, the output fixed type SA is used, for the 

multiply-accumulate operation of convolution, the 3D feature 

map and weights can be converted to a 2D matrix by the 

Img2col method, and then input into the Systolic Array for 

matrix multiplication respectively, and then the result can be 

rearranged to get the common channel-first data format. And 

for the matrix multiplication between Q K V matrices in 

MHA can also be achieved by Systolic Array. Therefore, we 

unify these two very different computation methods by using 

Systolic Array, which not only reduces the consumption of 

hardware resources such as DSP, BRAM, etc., but also the 

matrix multiplication itself is suitable for parallel 

computation by FPGA, and the different phases of the matrix 

multiplication (e.g., multiplication and accumulation) can be 

carried out in each PE at the same time. This processing can 

significantly increase throughput and reduce latency. 

III. ARCHITECTURE 

A. Architecture of SA 

This section presents a scalable Systolic Array architecture. 

It can be configured into different dimensions and sizes, such 

as 1*8*8, 4*8*8, 8*16*16 (Slice, Height, Width), by 

increasing the number of computational units in the array, 

thus easily expanding the computational power to meet the 

growing computational demands. The internal structure of 

some of the PEs, as shown in Fig. 2a, uses double buffers for 

data caching for matrix A. One buffer is used for reading and 

the other buffer is used for writing. While one buffer is being 

read, the other is being written. In this way, read and write 

operations can be performed simultaneously without 

conflicts. First, data from the front Kernel Size rows are 

written to Buffer A1, followed by data from the back Kernel 

Size rows being written to Buffer A2 when data from Buffer 

A1 is fed to the array.This overlapping of data transfer and 

computation significantly improves performance. Matrix B is 

also cached by double buffers and then input to the array in 

column order, and the array can process the data of Slice * 

Height columns at one time.The PE internally uses multiplier, 

adder, and registers to perform multiply-add operations, and 

two registers to cache the input data to flow into the next PE 

in the next clock cycle. 

The 2D structure of a Slice in a 3D array is shown in Fig. 

2b. A1, A2... B1, B2... denote the data streams of matrix A 

and matrix B, which flow and participate in the computation 

between the PEs in the column direction and row direction, 

respectively. O1, O2 indicates each row of output in the 

Systolic Array, only one PE in each row will output a valid 

result in a cycle, whether the output result is valid or not is 

controlled by the counter. 
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Fig. 2. 3D Architecture of systolic array(left),2D 

Architecture of systolic array(right). 

 

Take two 4*4 pixel matrices as an example, matrix 

multiplication operation is performed on matrix A and matrix 

B. Matrix A and matrix B enter the Systolic Array in the 

order of columns and rows respectively, and at the beginning 

of the computation in the first clock cycle pixel a enters the 

PE with pixel 1 to do the multiplication operation and saves 

the result 1a in the register. From the column direction, the 

second clock cycle pixel a continues to flow down into PE 

(2,1), at which time pixel point 5 also enters this PE to do the 

multiplication operation with pixel point a and saves the 

result 5a. At the same time pixel b and pixel 2 enter PE(1,1) 

to do multiplication and addition with the previously saved 

result 1a and then the result is saved. Similarly in the row 

direction, the second clock cycle pixel 1 flows into PE(1,2) 

and does multiplication with pixel e to save the result. And so 

on until pixel p and pixel 16 do the multiply-accumulate 

operation at PE(4,4), representing the end of matrix 

multiplication. When the calculation results are output, the 

multiply-accumulate results of the first column of matrix A 

and the first row of matrix B are output at the moment of 

CLK1, and the calculation results of the second column of 

matrix A and the first row of matrix B are output at the 

moment of CLK2. And so on, each row of Systolic Array has 

an output for each clock cycle, and then the output results can 

be data rearranged, as shown in Fig 3. 
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Fig. 3. Clock period of the output result. 

B. Mapping Convolution to Matrix Multiplication 

Tensor, as the basic building block of neural network data 
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storage, plays a crucial role in network computation tasks. 

Then how to implement convolution operation by matrix 

multiplication for such data format as tensor, a large amount 

of academic research is devoted to Img2Col[11], which has the 

core idea of converting the pixel values of input feature maps 

into column vectors and storing them in a large matrix. This 

approach can greatly simplify the computational process of 

convolutional neural networks, because each convolution 

operation can be regarded as a matrix multiplication 

operation, and can support convolution operations of 

arbitrary size, which only requires dynamic configuration of 

the Img2Col module. The implementation of the Img2Col 

algorithm requires the use of a number of techniques, such as 

the use of stride and padding, to ensure that the output of the 

convolution operation is of the correct result and size. The 

Img2Col algorithm is a very effective image processing 

algorithm that can greatly accelerate the training and 

inference process of neural networks, and a large number of 

academic studies have proved the effectiveness of this 

algorithm and it has been widely used[12]. 

Traditional convolutional accelerators tend to focus on 

providing hardware support for convolutions of specific 

sizes, such as 1×1 and 3×3 convolutions. While this design 

improves the efficiency of these common operations, it also 

limits the flexibility and scalability of the accelerator to adapt 

to different network architectures. These accelerators may 

not provide optimal performance when confronted with 

uncommon convolution sizes, such as 7×7 convolution.The 

DETR model is a good example of a 7×7 convolution used in 

Backbone to extract features from input feature 

maps.Convolution kernels of this size may not run efficiently 

on conventional accelerators, which in turn can affect the 

performance of the entire network. 

The Img2col module allows for the equivalent mapping of 

convolution operations to matrix multiplication. This 

mapping converts the convolution operation to matrix 

multiplication by converting the convolution kernel to a 

matrix, converting the input feature maps to another matrix, 

and then inputting the column vectors in the matrix 

sequentially to the Systolic Array[13]. Various sizes of 

convolution operations such as 1*1, 3*3, 5*5, 7*7, 16*16 can 

be achieved by mapping. 

Matrix A
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Matrix B
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Fig. 4. CNN mapped to matrix multiplication. 

 

Assume that the dimension of the input feature map is [B,

H,W,C] (assuming a batch size of 1 here), the dimension of t

he convolution kernel is [𝐶′,𝐻′,𝑊′,C], and the dimension of 

the output feature map is [𝐵′,𝐻′,𝑊′,𝐶′]. The input feature ma

p and convolution kernel can then be spread into matrices A[(𝑊′ × 𝐻′) × (𝐾2 × 𝐶)] and B[(𝐾2 × 𝐶) × 𝐶′], respectivel

y. Due to the image data storage format, the weight values of

 the convolution kernel with the pixel values of each sliding 

window of the input feature maps will be unfolded along the 

dimensions of the channel (the order of unfolding is [C,W,H]

) as shown in Fig. 4. Further, by matrix multiplication operat

ion A× B, we can get the matrix representation C[(𝑊′ ×𝐻′) × 𝐶′] of the final output feature map. 

We can clearly observe that: each row of matrix A 

corresponds to the spreading of each sliding window in the 

input feature map; each column of matrix B corresponds to 

the spreading of the weight values of the convolution kernel 

on each output channel; and each row of matrix C represents 

the eigenvalues of all the channels for each pixel point in the 

output feature map. So what we are trying to do is to get the 

result we want by performing an additional memory 

rearrangement of the inputs and outputs, converting the 3D 

data into a 2D matrix and then performing a matrix 

multiplication operation. By corresponding the 3D 

convolution operation to this matrix multiplication, the tensor 

cells are expanded in the channel dimension as shown in Fig 

5. 
C

H
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Fig. 5. 3-D tensor is flattened along the channel dimension. 

 

C. Calculation of multi-head attention mechanism 

The essence of the Transformer model lies in its 

multi-head attention mechanism. This mechanism is able to 

capture complex relationships in a sequence by splitting the 

input sequence into multiple heads and computing the 

attention of different parts in parallel. At the underlying 

computation, the process of multi-head attention can be 

clearly represented as a matrix operation, which is easy to 

implement in hardware, allowing the distribution of matrix 

multiplication computations across multiple computational 

units for parallel processing[14]. 

In DETR, a 1x1 convolution is used to reduce the channel 

dimension of the activation f from C to a smaller dimension 

d, thus creating a new feature map 𝑍0 ∈ 𝑅𝑑∗𝐻∗𝑊. The encoder 

expects a sequence as input, so it compresses the spatial 

dimension of 𝑍0 into one dimension to obtain a feature map 

of d*HW. Positional encoding, as the other input to the 

encoder, also compresses the spatial dimension into one 

dimension, obtaining a sequence of dimension d*HW, which 

is used to provide positional information. 

The three matrices Q (Query), K (Key), and V (Value) are 

obtained by summing the spatial dimensionally compressed 

activation f and Positional encoding. These three matrices are 

the basis of the multi-head attention mechanism, and 

represent different roles in the attention computation: the 

Query matrix is used to determine the focus of attention, the 

Key matrix is used to compare the relative importance of the 

input elements, and the Value matrix contains the 

information that is ultimately to be aggregated. Q, K, and V 

are generated in parallel, and their weights are concatenated 

to form a larger matrix. This design allows each head to 

process the information independently, thus enabling rich 

features to be captured in different representation subspaces. 
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In this way, the multiple attention mechanism is able to 

effectively mimic selective attention in the human visual 

system, being able to focus on important parts while ignoring 

irrelevant information when processing complex scenes[15]. 

In DETR, this mechanism enables the model to learn 

complex relationships between image blocks, leading to 

excellent performance in target detection and other visual 

tasks. 

IV. EVALUATION AND ANALYSIS 

A. Analysis of resources and power consumption 

To achieve efficient and less resource-intensive neural 

network deployments, we adopt a strategy that minimises the 

consumption of DSP resources in the FPGA while ensuring 

efficient processing of critical computational tasks. We use 

DSP multiplexing to reduce resource consumption by 

implementing the computation of two sets of int8 type data in 

a single DSP. Especially in Systolic Array, which is used for 

computationally intensive tasks, this resource-optimised 

strategy not only reduces the hardware cost, but also reserves 

valuable resource space for subsequent expansion of the 

whole system. In addition, the configurable compute logic 

units enhance the versatility of the accelerator for networks of 

different sizes, and the design dynamically adjusts the use of 

DSPs according to the computational demands of the neural 

network model, thus improving data throughput and ensuring 

real-time performance. In this way, even neural network 

models with large computational volumes can achieve 

efficient operation on limited hardware resources, ensuring 

performance and avoiding waste of resources. As shown in 

Fig. 6, we configured Systolic Array with different sizes. The 

power consumption increases from 3.5W for the (1,8,8) 

configuration to 13.8W for the (8,16,16) configuration. 

however, the throughput increases from 25.6 GOP/s to 608.6 

GOP/s, resulting in a 20-fold improvement. In addition, the 

energy efficiency increased from 7.17 GOPs/W to 41.4 

GOPs/W. 

 

 Fig.6.Comparison of Characteristics and Resource 

Utilization among 

Accelerators With Different Sizes. 

B. Performance comparison 

To further demonstrate the superiority of our proposed 

computational architecture, Table 1 shows the performance 

comparison of our design with existing FPGA-based 

accelerators. For all evaluated networks, our accelerator 

achieves 38.01 - 41.4 GOP/s/W in terms of energy efficiency 

(GOP/s/W), which outperforms the accelerator proposed by 

[7][16], although the accelerator proposed by [17] achieves 

1030.93 GOP/s/W in terms of energy efficiency, it only 

implements Transformer- base and cannot implement deep 

learning operators such as convolution, pooling, ADD, etc., 

whereas our proposed accelerator can implement the 

complete ResNet-50 as well as Transformer's Encoder and 

Decoder deployment. In addition, the accelerator proposed in 

[7] uses 16bit quantisation for computation, making the DSP 

utilisation inefficient, with much higher power consumption 

and much lower throughput than ours. Although the 

throughput of the accelerator proposed in [16] is slightly 

higher than ours, the power consumption is higher than ours, 

making the energy efficiency lower than ours. 

 

Table 1 Comparison with related FPGA accelerators 

Related work [7]  [16]     [17]   This work 

Platform Alveo U50 XCVU37p XCVU13p ZCU102 

DSP 2420 1024 129 2198 

BRAM 1002 448 498 663 

LUT 258k 141k 472k 212k 

FF 257k 223k 218k 256k 

Power 39 16.9 16.7 13.8 

Throught 309.6 576.52 1030.93 524.6 

 

V. CONCLUSION 

In this paper, we propose a hardware accelerator that 

uniformly maps two types of large-scale computations onto a 

Systolic Array according to the computational characteristics 

of models based on the attention mechanism and convolution, 

which not only improves the computational efficiency, but 

also simplifies the hardware design, enabling the accelerator 

to support various network structures with higher flexibility 

and scalability. We have achieved accelerated processing of 

deep learning networks using an efficient Systolic Array and 

a reasonable memory structure, and achieved good results. 

Further future research could explore the scalability of 

hardware accelerators to handle more complex tasks and 

models. 
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