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Abstract— The detection and description of feature points are 

the foundation of algorithms in autonomous driving. In this 

paper, we propose a hardware ORB feature extraction system, 

accelerator, which has good acceleration effects for FAST 

(acceleration segment testing features) and rotation brief 

(binary robust independent basic features), and can achieve 

processing speeds of thousands of frames per second with low 

power consumption We achieved a processing speed of up to 

1014.1 Mpix/s with only 4.462 watts based on KR260 

evaluation. To make feature point extraction more uniform, we 

made minimal modifications to achieve block based feature 

extraction, allowing the CPU and FPGA to work together to 

implement octree filtering 

 
Index Terms—Accelerator, ORB, FPGA.  

I. INTRODUCTION 

  Simultaneous Localization and Mapping (SLAM)[1] is a 

pivotal algorithm for autonomous navigation and positional 

estimation, enabling devices to simultaneously determine 

their own location and reconstruct environmental maps 

without relying on external beacons like satellites. This 

capability is critical in environments where GPS signals are 

unavailable or unreliable, such as indoor spaces and urban 

canyons. Widely applied in robotics, autonomous vehicles, 

drones, and augmented reality (AR), SLAM continues to 

drive innovation across industries. As research advances, its 

role is expanding in smart devices, automated systems, and 

urban infrastructure development, promising broader 

societal impacts through enhanced automation and 

intelligent solutions. 

SLAM systems are broadly categorized by sensor type, 

with laser-based and vision-based approaches being the 

most prominent. Laser SLAM[2], utilizing LiDAR, directly 

measures spatial relationships to generate high-precision 

maps and is considered a mature technology. However, its 

high cost and limited semantic data output hinder 

scalability[3]. In contrast, visual SLAM (vSLAM), which 

processes camera or multi-sensor inputs (e.g., inertial 

measurement units), offers cost efficiency, compact 

hardware, and adaptability. Compared with laser SLAM, 

visual SLAM requires lower sensor costs and simpler 

equipment, so it is favored by many scholars[4]. 

Visual odometry, a core component of vSLAM, estimates 

sensor motion through sequential image analysis. 

Feature-based methods, such as ORB-SLAM, extract and 

track distinctive keypoints (e.g., ORB[5] features) across 
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frames, balancing computational efficiency with robustness 

against illumination changes and motion blur. Direct 

methods, which optimize pixel intensity gradients without 

feature extraction, are computationally lighter but sensitive 

to lighting variations[6].Given the computational intensity of 

SLAM algorithms, which predominantly lies in feature 

extraction, this study focuses on deploying ORB-SLAM on 

embedded FPGA platforms and optimizing its ORB feature 

extraction accelerator. Key innovations include: 

(1) Dynamic Threshold Partitioning for Feature 

Extraction: A novel hardware architecture leveraging 

adaptive threshold segmentation to enhance feature 

detection efficiency while maintaining robustness. 

(2) Resource-Efficient Optimization: Implementation of 

extensive quantization and pruning strategies, significantly 

reducing hardware resource consumption without 

compromising accuracy. 

(3) High-Performance Deployment: A streamlined 

FPGA-based solution achieving real-time processing 

capabilities, balancing computational speed and power 

efficiency for embedded applications. 

II. RELATED WORK 

Mateusz Wasala[7] employed a vectorized data format (4 

pixels per clock) to efficiently reduce hardware resource 

usage, accelerating ORB feature extraction on an AMD 

Xilinx ZCU104 FPGA. This implementation achieved 

real-time processing of 4K UHD video streams (60 fps) with 

a system power consumption of only 5W, demonstrating 

superior energy efficiency and throughput compared to 

conventional embedded solutions. Weikang Fang et al.[8] 

proposed an FPGA-based ORB accelerator comprising an 

oFAST feature detector and a Steered BRIEF descriptor 

module. They designed a synchronous two-level pipelined 

buffer architecture to minimize latency and memory 

demands, while further reducing hardware resource 

consumption via bit-width optimization. Implemented on an 

Altera Stratix V FPGA, their design reduced latency by 51% 

and 41% compared to ARM Krait and Intel Core i5 CPUs, 

respectively, while increasing throughput by 103% and 68% 

and lowering power consumption by 9% and 83%. 

Huang B C et al.[9] introduced a signature-based method 

for features, where only descriptors with identical signatures 

undergo Hamming distance calculations to accelerate 

matching. Their ORB extraction and matching hardware 

architecture, implemented on a Xilinx ZCU102 FPGA, 

achieved 193 fps for 1280×720 images and 314 fps for 640

× 480 images. Feature matching volume decreased by 

69.63% to 85.7%, while maintaining over 85% accuracy. 

Qixing Zhang et al.[10] developed a flow-based ORB 

accelerator utilizing a column-caching strategy to enable 
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non-blocking rBRIEF descriptor computation, significantly 

boosting throughput. Deployed on a Zynq UltraScale SoC, 

their design achieved an average latency of 1.4 ms (44% 

faster than state-of-the-art solutions) and a power 

consumption of 1.5W, making it ideal for low-power 

scenarios. 

III. ARCHITECTURE 

A. Overall Algorithm Overview 

When processing images using the ORB algorithm on a 

CPU, the workflow begins by detecting candidate corners 

through the FAST method, which rapidly identifies 

keypoints by comparing pixel intensity variations. These 

raw corners are then assessed for quality using the Harris 

scoring metric to evaluate their stability and distinctiveness, 

ensuring only robust features proceed. To avoid redundancy, 

a non-maximum suppression (NMS) step removes 

overlapping or densely clustered corners, prioritizing 

spatially distributed keypoints. Further refinement discards 

those lacking sufficient surrounding pixels to support a 

complete 31 × 31 pixel contextual analysis window, 

ensuring reliable descriptor generation. 

For surviving keypoints, rotation invariance is achieved 

by calculating their orientation via the intensity centroid 

method, which determines directional vectors based on local 

gradient distributions. Before generating descriptors, a 

Gaussian filter smooths the 31×31 pixel neighborhood 

around each keypoint, reducing noise sensitivity and 

enhancing feature consistency. Finally, rotation-aware 

rBRIEF descriptors are created by systematically sampling 

and binarizing intensity comparisons within the smoothed 

region, producing compact binary strings optimized for 

efficient matching.  

In vSLAM systems, the distribution quality of feature 

points directly impacts the robustness and accuracy of pose 

estimation. Traditional ORB feature extraction algorithms 

select the top N feature points with the highest response 

values as keypoints. However, as illustrated in Figure 1(a), 

this global-ranking-based selection strategy exhibits a 

critical flaw: high-texture regions (e.g., building edges, 

intricate decorations) accumulate excessive feature points, 

while low-texture areas (e.g., plain walls, skies) suffer from 

sparse or missing features. Such non-uniform distribution 

not only increases feature redundancy but also risks feature 

matching failures in low-texture scenarios, potentially 

causing SLAM tracking loss. To address this limitation, 

ORB-SLAM incorporates a hierarchical filtering mechanism 

that integrates image pyramids, spatial uniformity 

constraints, and dynamic threshold adjustments, achieving 

adaptive optimization of feature point distribution. To solve 

this problem, ORB-SLAM uses block dynamic threshold to 

extract feature points and octree to filter feature points. The 

feature point extraction effect is shown in Figure 2.  

 
Fig.1 TOP-k filtering 

 
Fig.2 Octree filtering 

B. Overall architecture  
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Fig.3 Overall hardware architecture 

As shown in Figure 3, the hardware architecture 

implemented by our accelerator is also a common 

architecture for ORB feature extraction accelerators. Based 

on this, we have adjusted this architecture to support block 

based feature point extraction. Firstly, image preprocessing 

and rough keypoint extraction are completed: the original 

image is loaded into blocks through the AXI interface into 

the Image Cache, and then noise is suppressed by a 

Gaussian filter. The output smoothed image is temporarily 

stored in a dedicated cache area (Smoothed Image Cache). 

Based on this, the FAST-9 detection module traverses pixels 

in a circle (radius of 3 pixels), quickly identifies candidate 

keypoints through parallel differential comparison circuits, 

and combines the 3 × 3 sliding window filtering of the 

Non Maximum Suppression (NMS) module to preliminarily 

obtain a candidate point set with local maximum response. 

Then focus on the rotation invariance compensation and 

flow calculation of descriptors. For each candidate keypoint, 

the direction calculation module first solves the main 
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direction angle θ based on the grayscale centroid method 

within a neighborhood of 15 pixels in radius; Subsequently, 

the BRIEF rotator utilizes a pre stored rotation lookup table 

(LUT) to perform θ angle rotation transformation on 256 

pairs of sampling point coordinates, avoiding the overhead 

of real-time triangulation operations. Within the 31 × 31 

pixel window after rotation correction, the BRIEF 

calculation module generates a 256 bit binary descriptor by 

comparing the results of point pairs, effectively suppressing 

noise interference and calculating the results. The final 

filtered result is returned after feature point filtering. 
C. Block based dual threshold extraction  
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Fig.3 Implementation of the FAST module 

The algorithm employs an image pyramid, where each 

pyramid layer is divided into 32×32 grid cells, and feature 

extraction is performed independently within each cell. If 

feature detection fails under the initial threshold, a lower 

threshold is applied. However, this poses a challenge in 

hardware implementation, as it typically requires two 

parallel FAST feature extraction blocks to simultaneously 

detect keypoints under both high and low thresholds. 

Notably, while FAST detection is threshold-dependent, the 

computed FAST score remains threshold-independent. 

Leveraging this property, the Non-Maximum Suppression 

(NMS) stage inherently incorporates results from the higher 

threshold when processing the lower-threshold-detected 

features, as the latter encompasses all candidates from the 

former. This design avoids the need for redundant 

computational units to handle dual thresholds, significantly 

minimizing hardware resource consumption without 

compromising detection integrity. 

The design requires two FAST Detection units: one 

computes corners under the lower threshold, while the other 

operates at the default threshold, collectively generating 

mask flags. The FAST score is calculated for low-threshold 

corners, which are then fed into the NMS module. The NMS 

independently processes both thresholds to produce filtered 

results for high and low thresholds. Corners rejected by both 

thresholds are immediately discarded. For other cases, 

retention or rejection is deferred until the entire block is 

processed to determine the final outcome. As depicted in the 

FAST block architecture in Figure 3, additional FAST 

detection units are integrated. Since FAST Detection 

consumes minimal hardware resources, this modification 

incurs negligible overhead. 

The system temporarily stores detected feature points in 

FIFO buffers to manage data flow during processing. Each 

feature point's coordinates are translated into a 

corresponding block identifier, which dynamically updates 

status records stored in RAM to track processing progress. 

A dedicated module monitors whether the entire block 

associated with a feature point has been fully analyzed. 

Once block processing concludes, the system queries the 

RAM to classify the block as either a default- or 

low-threshold region, determining whether the point is 

retained or discarded based on this classification. 

Configurable components, indicated by dashed lines in the 

architecture, enable adaptive customization of the pipeline 

to suit specific operational requirements. Notably, the 

original merge-sort-based prioritization mechanism is 

replaced with an ARM-optimized approach, eliminating 

resource-intensive sorting logic while preserving hardware 

efficiency. This streamlined design ensures spatially 

balanced feature distribution across varying texture 

environments, maintaining real-time performance without 

compromising accuracy or increasing hardware overhead. 

D. Octree filtering  
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Fig.4 Octree filtering sequence diagram 

This design establishes a hybrid ARM-FPGA 

co-processing architecture: 1) A scaling unit constructs 

Gaussian pyramids for multi-scale analysis; 2) The FPGA 

logic layer executes parallel block-wise feature extraction; 3) 

The ARM processor performs octree-based feature 

optimization. By pipelining stages 2 and 3, the 

computational latency of the octree optimization is 

effectively masked. 

As illustrated in Figure 4, octree filtering for layer x and 

feature extraction for layer x+1 are executed concurrently, 

fully utilizing the ARM’s idle cycles. The trade-off involves 

a final octree filtering step for the last layer. However, due 

to reduced image dimensions and fewer detected features in 

deeper pyramid layers, this step incurs minimal 

computational overhead. The proposed approach retains the 

spatial partitioning advantages of the octree algorithm while 

significantly reducing FPGA resource utilization and 

development complexity, leveraging ARM-FPGA 

parallelism for efficient implementation. 

E. Resource Optimization  
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Fig.5 Multiplication Implementation 

To minimize hardware resource consumption, we first 

apply quantization to specific computational steps, reducing 

numerical precision. The quantized values, typically smaller 

in magnitude, enable the replacement of multiplication 

operations with shift-add or shift-subtract logic. For fixed 

weights, direct shift-based arithmetic is employed, while 

dynamic scenarios involving floating-point weights utilize 

multiplexers to select preconfigured shift-add/subtract 

patterns. This approach simplifies computation logic and 

significantly reduces resource overhead without 

compromising functional integrity. The implementation is 

shown in Figure 5. 

IV. ANALYSIS OF EXPERIMENTAL RESULTS 

A. Experiment Settings 

This study conducts a systematic evaluation of the ORB 

feature extraction accelerator design, focusing on 

computational efficiency and hardware resource utilization. 

The architecture was synthesized and implemented using 

Vivado 2023.2, and benchmarked on the AMD-Xilinx 

KR260 platform at a 200 MHz operational frequency. 

Performance validation utilized the TUM[11] public dataset 

to ensure reproducibility and comparative analysis. 

B. Resource Utilization 

Table 1 Comparison of Resource Utilization 

Method LUT FF DSP BRAM 

Ours 35,059 28,214 1 2.1 Mb 

[12] 71,423 49,649 285 3.13 Mb 

[13] 54,435 30,281 44 1.83 Mb 

[14] 28,168 9,528 33 1.47 Mb 

[15] 100,606 140,291 683 6.7 Mb 

[16] 56,954 67,809 11 2.73 Mb 

 

As shown in Table 1, the resources we used are compared 

with those used in other works We adopted quantization and 

used addition/subtraction instead of multiplication, so our 

DSP uses very little And our use of other resources is also 

minimal, with significant advantages in LUT and FF. 

C. Performance Evaluation 

Table 2 Acceleration effect 

Method Platform 
power 

consumption 

delay 

time  

Ours 
Xilinx 
KR260 

4.462 w 0.6 ms 

ORB Intel i5 45 w 16 ms 

 

Table 3 Accelerator performance comparison 

Method Platform MPix/s nLevels result FPS 

Ours 
Xilinx 
KR260 

1014.1 4 640×480 1428 

[12] 
Xilinx 

Virtex-7 
355.9 4 1920×1080 68.8 

[13] 
Xilinx 

Kirtex-7 
138.2 1 1280×720 150 

[14] 
Xilinx 

Ultrascale+ 
485.1 108 1920×1080 108 

[15] 
Xilinx 

ZCU104 
497.7 1 3840×2160 60 

[16] 
Xilinx 

XCZ7045 
58.2 4 640×480 76 

 

Table 2 shows our acceleration performance. Compared 

to desktop CPUs, our power consumption is only one tenth, 

and the latency time has been reduced from 16ms to 0.7ms, 

an increase of 22.8 times Compared to other ORB feature 

extraction accelerators, our FPS is the highest, partly due to 

the smaller size of the images we process Therefore, this 

study calculated the number of pixels processed per second 

by each accelerator, and we achieved first place with a 

performance of up to 1014.1Mpix/s 

D. Accuracy Evaluation 

 
Fig.6 ATE comparison 

We integrated the accelerator into the ORB-SLAM2 

algorithm and evaluated it using the TUM dataset on 

fr1_xyz, fr1_dest, fr2.xyz, and fr1_room. The accuracy of 

visual SLAM systems is measured by trajectory error, which 

calculates the absolute trajectory error between the ground 

truth trajectory and the estimated trajectory. Compared with 

the original ORB SLAM2 algorithm, as shown in Figure 6, 

our work compares the average trajectory error on the four 

sequences of the TUM dataset with the original ORB based 

SLAM implementation. For the fr1/dest and fr2/xyz 

sequences, our ORB version has better accuracy than the 

original ORB implementation. However, the evaluation was 

slightly worse on the fr1/desk and fr2/room sequences.  

V. CONCLUSION 

This article designs an ORB feature extraction accelerator 

and innovatively implements block based feature extraction. 

The accuracy obtained in this article can be higher in some 

sequences By using quantitative resource conservation, the 

performance of 1014.1 Mpix/s was achieved with fewer 

resources, which is the best performance in this work, but it 

did not rely on stacking resources efficiency, and real-time 

performance. 
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