
 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 57 www.ijerm.com

Abstract— The detection and description of feature points are

the foundation of algorithms in autonomous driving. In this

paper, we propose a hardware ORB feature extraction system,

accelerator, which has good acceleration effects for FAST

(acceleration segment testing features) and rotation brief

(binary robust independent basic features), and can achieve

processing speeds of thousands of frames per second with low

power consumption We achieved a processing speed of up to

1014.1 Mpix/s with only 4.462 watts based on KR260

evaluation. To make feature point extraction more uniform, we

made minimal modifications to achieve block based feature

extraction, allowing the CPU and FPGA to work together to

implement octree filtering

Index Terms—Accelerator, ORB, FPGA.

I. INTRODUCTION

 Simultaneous Localization and Mapping (SLAM)[1] is a

pivotal algorithm for autonomous navigation and positional

estimation, enabling devices to simultaneously determine

their own location and reconstruct environmental maps

without relying on external beacons like satellites. This

capability is critical in environments where GPS signals are

unavailable or unreliable, such as indoor spaces and urban

canyons. Widely applied in robotics, autonomous vehicles,

drones, and augmented reality (AR), SLAM continues to

drive innovation across industries. As research advances, its

role is expanding in smart devices, automated systems, and

urban infrastructure development, promising broader

societal impacts through enhanced automation and

intelligent solutions.

SLAM systems are broadly categorized by sensor type,

with laser-based and vision-based approaches being the

most prominent. Laser SLAM[2], utilizing LiDAR, directly

measures spatial relationships to generate high-precision

maps and is considered a mature technology. However, its

high cost and limited semantic data output hinder

scalability[3]. In contrast, visual SLAM (vSLAM), which

processes camera or multi-sensor inputs (e.g., inertial

measurement units), offers cost efficiency, compact

hardware, and adaptability. Compared with laser SLAM,

visual SLAM requires lower sensor costs and simpler

equipment, so it is favored by many scholars[4].

Visual odometry, a core component of vSLAM, estimates

sensor motion through sequential image analysis.

Feature-based methods, such as ORB-SLAM, extract and

track distinctive keypoints (e.g., ORB[5] features) across

Manuscript received March 13, 2025
Qingyu Chen, School of computer science and technology, Tiangong

University, Tianjin, China.

YunFei Wang, School of computer science and technology, Tiangong
University, Tianjin, China.

frames, balancing computational efficiency with robustness

against illumination changes and motion blur. Direct

methods, which optimize pixel intensity gradients without

feature extraction, are computationally lighter but sensitive

to lighting variations[6].Given the computational intensity of

SLAM algorithms, which predominantly lies in feature

extraction, this study focuses on deploying ORB-SLAM on

embedded FPGA platforms and optimizing its ORB feature

extraction accelerator. Key innovations include:

(1) Dynamic Threshold Partitioning for Feature

Extraction: A novel hardware architecture leveraging

adaptive threshold segmentation to enhance feature

detection efficiency while maintaining robustness.

(2) Resource-Efficient Optimization: Implementation of

extensive quantization and pruning strategies, significantly

reducing hardware resource consumption without

compromising accuracy.

(3) High-Performance Deployment: A streamlined

FPGA-based solution achieving real-time processing

capabilities, balancing computational speed and power

efficiency for embedded applications.

II. RELATED WORK

Mateusz Wasala[7] employed a vectorized data format (4

pixels per clock) to efficiently reduce hardware resource

usage, accelerating ORB feature extraction on an AMD

Xilinx ZCU104 FPGA. This implementation achieved

real-time processing of 4K UHD video streams (60 fps) with

a system power consumption of only 5W, demonstrating

superior energy efficiency and throughput compared to

conventional embedded solutions. Weikang Fang et al.[8]

proposed an FPGA-based ORB accelerator comprising an

oFAST feature detector and a Steered BRIEF descriptor

module. They designed a synchronous two-level pipelined

buffer architecture to minimize latency and memory

demands, while further reducing hardware resource

consumption via bit-width optimization. Implemented on an

Altera Stratix V FPGA, their design reduced latency by 51%

and 41% compared to ARM Krait and Intel Core i5 CPUs,

respectively, while increasing throughput by 103% and 68%

and lowering power consumption by 9% and 83%.

Huang B C et al.[9] introduced a signature-based method

for features, where only descriptors with identical signatures

undergo Hamming distance calculations to accelerate

matching. Their ORB extraction and matching hardware

architecture, implemented on a Xilinx ZCU102 FPGA,

achieved 193 fps for 1280×720 images and 314 fps for 640

× 480 images. Feature matching volume decreased by

69.63% to 85.7%, while maintaining over 85% accuracy.

Qixing Zhang et al.[10] developed a flow-based ORB

accelerator utilizing a column-caching strategy to enable

A High-Performance ORB Feature Extraction Accelerator

for SLAM

Qingyu Chen, Yunfei Wang

http://www.ijerm.com/

A High-Performance ORB Feature Extraction Accelerator for SLAM

 58 www.ijerm.com

non-blocking rBRIEF descriptor computation, significantly

boosting throughput. Deployed on a Zynq UltraScale SoC,

their design achieved an average latency of 1.4 ms (44%

faster than state-of-the-art solutions) and a power

consumption of 1.5W, making it ideal for low-power

scenarios.

III. ARCHITECTURE

A. Overall Algorithm Overview

When processing images using the ORB algorithm on a

CPU, the workflow begins by detecting candidate corners

through the FAST method, which rapidly identifies

keypoints by comparing pixel intensity variations. These

raw corners are then assessed for quality using the Harris

scoring metric to evaluate their stability and distinctiveness,

ensuring only robust features proceed. To avoid redundancy,

a non-maximum suppression (NMS) step removes

overlapping or densely clustered corners, prioritizing

spatially distributed keypoints. Further refinement discards

those lacking sufficient surrounding pixels to support a

complete 31 × 31 pixel contextual analysis window,

ensuring reliable descriptor generation.

For surviving keypoints, rotation invariance is achieved

by calculating their orientation via the intensity centroid

method, which determines directional vectors based on local

gradient distributions. Before generating descriptors, a

Gaussian filter smooths the 31×31 pixel neighborhood

around each keypoint, reducing noise sensitivity and

enhancing feature consistency. Finally, rotation-aware

rBRIEF descriptors are created by systematically sampling

and binarizing intensity comparisons within the smoothed

region, producing compact binary strings optimized for

efficient matching.

In vSLAM systems, the distribution quality of feature

points directly impacts the robustness and accuracy of pose

estimation. Traditional ORB feature extraction algorithms

select the top N feature points with the highest response

values as keypoints. However, as illustrated in Figure 1(a),

this global-ranking-based selection strategy exhibits a

critical flaw: high-texture regions (e.g., building edges,

intricate decorations) accumulate excessive feature points,

while low-texture areas (e.g., plain walls, skies) suffer from

sparse or missing features. Such non-uniform distribution

not only increases feature redundancy but also risks feature

matching failures in low-texture scenarios, potentially

causing SLAM tracking loss. To address this limitation,

ORB-SLAM incorporates a hierarchical filtering mechanism

that integrates image pyramids, spatial uniformity

constraints, and dynamic threshold adjustments, achieving

adaptive optimization of feature point distribution. To solve

this problem, ORB-SLAM uses block dynamic threshold to

extract feature points and octree to filter feature points. The

feature point extraction effect is shown in Figure 2.

Fig.1 TOP-k filtering

Fig.2 Octree filtering

B. Overall architecture

A
X

I
In

te
rf

a
ce

Image Cache Fast Score

Windows Buff

FAST

Detection

NMS

BRIEF

Computing

BRIEF

Rotator

Image

Smoother

Orientation

Computing

Resize

Fig.3 Overall hardware architecture

As shown in Figure 3, the hardware architecture

implemented by our accelerator is also a common

architecture for ORB feature extraction accelerators. Based

on this, we have adjusted this architecture to support block

based feature point extraction. Firstly, image preprocessing

and rough keypoint extraction are completed: the original

image is loaded into blocks through the AXI interface into

the Image Cache, and then noise is suppressed by a

Gaussian filter. The output smoothed image is temporarily

stored in a dedicated cache area (Smoothed Image Cache).

Based on this, the FAST-9 detection module traverses pixels

in a circle (radius of 3 pixels), quickly identifies candidate

keypoints through parallel differential comparison circuits,

and combines the 3 × 3 sliding window filtering of the

Non Maximum Suppression (NMS) module to preliminarily

obtain a candidate point set with local maximum response.

Then focus on the rotation invariance compensation and

flow calculation of descriptors. For each candidate keypoint,

the direction calculation module first solves the main

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 59 www.ijerm.com

direction angle θ based on the grayscale centroid method

within a neighborhood of 15 pixels in radius; Subsequently,

the BRIEF rotator utilizes a pre stored rotation lookup table

(LUT) to perform θ angle rotation transformation on 256

pairs of sampling point coordinates, avoiding the overhead

of real-time triangulation operations. Within the 31 × 31

pixel window after rotation correction, the BRIEF

calculation module generates a 256 bit binary descriptor by

comparing the results of point pairs, effectively suppressing

noise interference and calculating the results. The final

filtered result is returned after feature point filtering.
C. Block based dual threshold extraction

FAST DetectionFAST Detection

Image cache

FAST Score

Score BUF

Mask

Compare

NMS

Fig.3 Implementation of the FAST module

The algorithm employs an image pyramid, where each

pyramid layer is divided into 32×32 grid cells, and feature

extraction is performed independently within each cell. If

feature detection fails under the initial threshold, a lower

threshold is applied. However, this poses a challenge in

hardware implementation, as it typically requires two

parallel FAST feature extraction blocks to simultaneously

detect keypoints under both high and low thresholds.

Notably, while FAST detection is threshold-dependent, the

computed FAST score remains threshold-independent.

Leveraging this property, the Non-Maximum Suppression

(NMS) stage inherently incorporates results from the higher

threshold when processing the lower-threshold-detected

features, as the latter encompasses all candidates from the

former. This design avoids the need for redundant

computational units to handle dual thresholds, significantly

minimizing hardware resource consumption without

compromising detection integrity.

The design requires two FAST Detection units: one

computes corners under the lower threshold, while the other

operates at the default threshold, collectively generating

mask flags. The FAST score is calculated for low-threshold

corners, which are then fed into the NMS module. The NMS

independently processes both thresholds to produce filtered

results for high and low thresholds. Corners rejected by both

thresholds are immediately discarded. For other cases,

retention or rejection is deferred until the entire block is

processed to determine the final outcome. As depicted in the

FAST block architecture in Figure 3, additional FAST

detection units are integrated. Since FAST Detection

consumes minimal hardware resources, this modification

incurs negligible overhead.

The system temporarily stores detected feature points in

FIFO buffers to manage data flow during processing. Each

feature point's coordinates are translated into a

corresponding block identifier, which dynamically updates

status records stored in RAM to track processing progress.

A dedicated module monitors whether the entire block

associated with a feature point has been fully analyzed.

Once block processing concludes, the system queries the

RAM to classify the block as either a default- or

low-threshold region, determining whether the point is

retained or discarded based on this classification.

Configurable components, indicated by dashed lines in the

architecture, enable adaptive customization of the pipeline

to suit specific operational requirements. Notably, the

original merge-sort-based prioritization mechanism is

replaced with an ARM-optimized approach, eliminating

resource-intensive sorting logic while preserving hardware

efficiency. This streamlined design ensures spatially

balanced feature distribution across varying texture

environments, maintaining real-time performance without

compromising accuracy or increasing hardware overhead.

D. Octree filtering

1

1 x

x

x

FPGA：Block based

feature extraction

ARM：Octree filtering
1

FPGA：Resize2

2

2

3

3

3

4

4

4

Fig.4 Octree filtering sequence diagram

This design establishes a hybrid ARM-FPGA

co-processing architecture: 1) A scaling unit constructs

Gaussian pyramids for multi-scale analysis; 2) The FPGA

logic layer executes parallel block-wise feature extraction; 3)

The ARM processor performs octree-based feature

optimization. By pipelining stages 2 and 3, the

computational latency of the octree optimization is

effectively masked.

As illustrated in Figure 4, octree filtering for layer x and

feature extraction for layer x+1 are executed concurrently,

fully utilizing the ARM’s idle cycles. The trade-off involves

a final octree filtering step for the last layer. However, due

to reduced image dimensions and fewer detected features in

deeper pyramid layers, this step incurs minimal

computational overhead. The proposed approach retains the

spatial partitioning advantages of the octree algorithm while

significantly reducing FPGA resource utilization and

development complexity, leveraging ARM-FPGA

parallelism for efficient implementation.

E. Resource Optimization

http://www.ijerm.com/

A High-Performance ORB Feature Extraction Accelerator for SLAM

 60 www.ijerm.com

mux

0 Fx Fx<<2 Fx<<3

Add/sub

0I
1I 2I 3I

<<1

add

<<2

add

+

+

+

+

<<3

add

+

-

x 1 x 3 x 5 x 7

Fixed weight Change weight

Fig.5 Multiplication Implementation

To minimize hardware resource consumption, we first

apply quantization to specific computational steps, reducing

numerical precision. The quantized values, typically smaller

in magnitude, enable the replacement of multiplication

operations with shift-add or shift-subtract logic. For fixed

weights, direct shift-based arithmetic is employed, while

dynamic scenarios involving floating-point weights utilize

multiplexers to select preconfigured shift-add/subtract

patterns. This approach simplifies computation logic and

significantly reduces resource overhead without

compromising functional integrity. The implementation is

shown in Figure 5.

IV. ANALYSIS OF EXPERIMENTAL RESULTS

A. Experiment Settings

This study conducts a systematic evaluation of the ORB

feature extraction accelerator design, focusing on

computational efficiency and hardware resource utilization.

The architecture was synthesized and implemented using

Vivado 2023.2, and benchmarked on the AMD-Xilinx

KR260 platform at a 200 MHz operational frequency.

Performance validation utilized the TUM[11] public dataset

to ensure reproducibility and comparative analysis.

B. Resource Utilization

Table 1 Comparison of Resource Utilization

Method LUT FF DSP BRAM

Ours 35,059 28,214 1 2.1 Mb

[12] 71,423 49,649 285 3.13 Mb

[13] 54,435 30,281 44 1.83 Mb

[14] 28,168 9,528 33 1.47 Mb

[15] 100,606 140,291 683 6.7 Mb

[16] 56,954 67,809 11 2.73 Mb

As shown in Table 1, the resources we used are compared

with those used in other works We adopted quantization and

used addition/subtraction instead of multiplication, so our

DSP uses very little And our use of other resources is also

minimal, with significant advantages in LUT and FF.

C. Performance Evaluation

Table 2 Acceleration effect

Method Platform
power

consumption

delay

time

Ours
Xilinx
KR260

4.462 w 0.6 ms

ORB Intel i5 45 w 16 ms

Table 3 Accelerator performance comparison

Method Platform MPix/s nLevels result FPS

Ours
Xilinx
KR260

1014.1 4 640×480 1428

[12]
Xilinx

Virtex-7
355.9 4 1920×1080 68.8

[13]
Xilinx

Kirtex-7
138.2 1 1280×720 150

[14]
Xilinx

Ultrascale+
485.1 108 1920×1080 108

[15]
Xilinx

ZCU104
497.7 1 3840×2160 60

[16]
Xilinx

XCZ7045
58.2 4 640×480 76

Table 2 shows our acceleration performance. Compared

to desktop CPUs, our power consumption is only one tenth,

and the latency time has been reduced from 16ms to 0.7ms,

an increase of 22.8 times Compared to other ORB feature

extraction accelerators, our FPS is the highest, partly due to

the smaller size of the images we process Therefore, this

study calculated the number of pixels processed per second

by each accelerator, and we achieved first place with a

performance of up to 1014.1Mpix/s

D. Accuracy Evaluation

Fig.6 ATE comparison

We integrated the accelerator into the ORB-SLAM2

algorithm and evaluated it using the TUM dataset on

fr1_xyz, fr1_dest, fr2.xyz, and fr1_room. The accuracy of

visual SLAM systems is measured by trajectory error, which

calculates the absolute trajectory error between the ground

truth trajectory and the estimated trajectory. Compared with

the original ORB SLAM2 algorithm, as shown in Figure 6,

our work compares the average trajectory error on the four

sequences of the TUM dataset with the original ORB based

SLAM implementation. For the fr1/dest and fr2/xyz

sequences, our ORB version has better accuracy than the

original ORB implementation. However, the evaluation was

slightly worse on the fr1/desk and fr2/room sequences.

V. CONCLUSION

This article designs an ORB feature extraction accelerator

and innovatively implements block based feature extraction.

The accuracy obtained in this article can be higher in some

sequences By using quantitative resource conservation, the

performance of 1014.1 Mpix/s was achieved with fewer

resources, which is the best performance in this work, but it

did not rely on stacking resources efficiency, and real-time

performance.

http://www.ijerm.com/

 International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 61 www.ijerm.com

REFERENCES

[1] Durrant-Whyte H, Bailey T. Simultaneous localization and mapping:
part I[J]. IEEE robotics & automation magazine, 2006, 13(2): 99-110.

[2] Zeng F, Wang C, Ge S S. A survey on visual navigation for artificial

agents with deep reinforcement learning[J]. IEEE Access, 2020, 8:
135426-135442.

[3] Choi S, Chae H W, Jeung Y, et al. Fast and versatile feature-based

lidar odometry via efficient local quadratic surface approximation[J].
IEEE Robotics and Automation Letters, 2022, 8(2): 640-647.

[4] Huang L. Review on LiDAR-based SLAM techniques[C]//2021

International conference on signal processing and machine learning
(CONF-SPML). IEEE, 2021: 163-168.

[5] Rublee E, Rabaud V, Konolige K, et al. ORB: An efficient alternative

to SIFT or SURF[C]//2011 International conference on computer
vision. Ieee, 2011: 2564-2571.

[6] Gomez-Ojeda R, Moreno F A, Zuniga-Noël D, et al. PL-SLAM: A

stereo SLAM system through the combination of points and line
segments[J]. IEEE Transactions on Robotics, 2019, 35(3): 734-746.

[7] Wasala M, Szolc H, Kryjak T. An efficient real-time FPGA-based

ORB feature extraction for an UHD video stream for embedded visual
SLAM[J]. Electronics, 2022, 11(14): 2259.

[8] Fang W, Zhang Y, Yu B, et al. FPGA-based ORB feature extraction

for real-time visual SLAM[C]//2017 International Conference on
Field Programmable Technology (ICFPT). IEEE, 2017: 275-278.

[9] Huang B C, Zhang Y J. A High-Efficiency FPGA-Based ORB

Feature Matching System[J]. Journal of Circuits, Systems &
Computers, 2024, 33(2).

[10] Zhang Q, Sun H, Deng Q, et al. NORB: A Stream-Based and

Non-Blocking FPGA Accelerator for ORB Feature
Extraction[C]//2023 30th IEEE International Conference on

Electronics, Circuits and Systems (ICECS). IEEE, 2023: 1-4.

[11] Sturm J, Engelhard N, Endres F, et al. A benchmark for the evaluation
of RGB-D SLAM systems[C] IEEE, 2012: 573-580.

[12] Zhang Z, Chen H, Zhou L, et al. Bucket-FEM: A bucket-based

architecture of real-time ORB feature extraction and matching for
embedded SLAM applications[C]//2021 6th International Conference

on Communication, Image and Signal Processing (CCISP). IEEE,

2021: 183-187.
[13] Xie Z, Wang Y, Yan Z, et al. A real-time FPGA-based architecture of

improved ORB[C]//MIPPR 2019: Parallel Processing of Images and

Optimization Techniques; and Medical Imaging. SPIE, 2020, 11431:

1143102.

[14] Sun R, Qian J, Jose R H, et al. A flexible and efficient real-time

orb-based full-hd image feature extraction accelerator[J]. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2019,

28(2): 565-5

[15] Wasala M, Szolc H, Kryjak T. An efficient real-time FPGA-based
ORB feature extraction for an UHD video stream for embedded visual

SLAM[J]. Electronics, 2022, 11(14): 2259.

[16] Liu R, Yang J, Chen Y, et al. eslam: An energy-efficient accelerator
for real-time orb-slam on fpga platform[C]//Proceedings of the 56th

Annual Design Automation Conference 2019. 2019: 1-6.

http://www.ijerm.com/

	I. Introduction
	II. Related Work
	III. Architecture
	A. Overall Algorithm Overview
	B. Overall architecture
	C. Block based dual threshold extraction
	D. Octree filtering
	E. Resource Optimization

	IV. Analysis Of Experimental Results
	A. Experiment Settings
	B. Resource Utilization
	C. Performance Evaluation
	D. Accuracy Evaluation

	V. Conclusion
	References

