
International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 36 www.ijerm.com

Abstract— The application of Convolutional Neural Networks

(CNNs) has significantly accelerated the development of

semantic segmentation, particularly in the domain of

autonomous driving. Semantic segmentation is crucial for

enabling autonomous vehicles to accurately perceive their

surroundings and make real-time decisions. However, the

increasing computational complexity has led to a substantial

rise in power consumption, hindering the progress of

self-driving technology. While Field Programmable Gate

Arrays (FPGAs) offer a means to accelerate network inference,

achieving an optimal balance between accuracy and speed

remains a significant challenge. This paper investigates

state-of-the-art semantic segmentation models and their

corresponding optimization techniques. We summarize the

critical requirements for system flexibility when mapping

models to embedded FPGAs. Based on these requirements, we

propose a reconfigurable semantic segmentation accelerator

that integrates hardware optimization and data quantization

strategies. The data quantization strategy reduces the bit width

to 8 bits without any discernible loss in accuracy. To further

reduce inference time, the network operators are implemented

and optimized directly in hardware. Additionally, an

instruction-controlled data flow is employed to support future

updates and scalability. To enhance coding efficiency and

reusability, we utilize SpinalHDL, an emerging hardware

description language embedded in Scala, a high-level

programming language, for the development of the proposed

accelerator. The performance of the design is evaluated on the

Virtex UltraScale+ VU9P FPGA platform, yielding accuracies

of 74.3% on the CamVid dataset and 72.1% on the Cityscapes

dataset, with a processing speed of 24 FPS, approaching

real-time performance. This work paves the way for more

energy-efficient and scalable solutions for autonomous driving

systems, with potential for real-world deployment in various

safety-critical environments.

Index Terms—FPGA, Semantic segmentation, Scalable

design, Accelerator

I. INTRODUCTION

The advent of Convolutional Neural Networks (CNNs) has

initiated a revolutionary transformation in the field of

computer vision. Compared to traditional methods, CNNs

offer significant advantages. including the ability to

automatically learn and extract image features, effectively

handle large-scale image datasets, and enhance accuracy

across various tasks[1]. Semantic segmentation, a vital

component of CNNs, plays a crucial role in numerous

industries, particularly in the realm of self-driving

technology. By precisely classifying of each pixel captured

by onboard cameras, semantic segmentation enables

Manuscript received March 10, 2025
Xin Liu, School of computer science and technology, Tiangong

University, Tianjin, China

autonomous vehicles to achieve a comprehensive

understanding of their surrounding environment, including

roads, pedestrians, and other vehicles. This detailed

perception is essential for the safe navigation and

decision-making processes of autonomous vehicles.

Specifically, self-driving cars must accurately segment cars,

pedestrians, road signs, and other objects in real-time to make

precise control decisions, ensuring safety and robustness in

diverse driving conditions[2].

 Nevertheless, in practical contexts, the pursuit of accuracy

alone is insufficient. Improving accuracy often leads to

increased computational complexity, which in turn results in

a sharp decline in recognition speed. To enhance the

processing speed of self-driving systems, the utilization of

Graphics Processing Units (GPUs) has become a prevalent

approach for network training and inference tasks. The

parallel processing capabilities of GPUs enable low latency

and real-time performance when handling large models[3].

Despite the high efficiency, the significant power

consumption of GPUs presents a challenge for the

advancement of self-driving technology. It is imperative that

self-driving systems process substantial quantities of

real-time data in a timely and efficient manner while

simultaneously maintaining low power consumption. This is

crucial for ensuring the safety and stability of the system.

 In order to reduce power consumption, researchers have

initiated an investigation into the potential of using

embedded processors for the execution of self-driving tasks.

Compared to GPUs, embedded processors exhibit markedly

reduced power consumption, thereby rendering them more

appropriate for real-time applications. Notable among these

are field-programmable gate arrays (FPGAs) and

application-specific integrated circuits (ASICs), which have

attracted considerable interest from researchers. While

ASICs could potentially achieve significant energy savings

due to their custom-designed circuits, they lacked flexibility

and had lengthy development cycles, which proved

disadvantageous in the context of the rapidly evolving field

of self-driving[4]. In contrast, FPGAs have the potential to

markedly enhance the speed of inference by modifying a

series of internal ASIC modules, including DSP blocks,

block RAM, and the necessary interface cores[5]. Compared

to software implementations on multi-core processors and

GPUs, FPGAs achieved competitive energy efficiency

(approximately 10-50 GOP/s/W) and low-latency inference ,

which is especially important for applications in the

self-driving field that required low latency and long-term

stable operation[7].

 This paper presents a reconfigurable hardware accelerator

designed to address the limitations of existing semantic

segmentation solutions, particularly regarding the balance

Design and Implementation of Scalable Accelerator for
Semantic Segmentation in Self-driving

Xin Liu

http://www.ijerm.com/

Design and Implementation of Scalable Accelerator for Semantic Segmentation in Self-driving

 37 www.ijerm.com

between accuracy and computational efficiency. We selected

the BiSeNetV1[8] network, a lightweight architecture known

for achieving a trade-off between model complexity and

segmentation accuracy. To facilitate deployment on

resource-constrained hardware platforms, we employed a

quantization strategy that effectively reduces model size

without compromising inference accuracy. This approach

optimizes resource utilization, making it feasible for

implementation on platforms with limited capacity.The

proposed quantization method was rigorously validated

across multiple datasets, demonstrating its effectiveness in

maintaining high accuracy while minimizing resource

consumption. To further enhance computational efficiency,

we integrated several optimization techniques, including loop

unrolling, tiling, and data swapping, which improve

parallelism in convolution operations and streamline the

overall computation process, thereby reducing processing

time.DSP optimization was applied to minimize on-chip

memory access frequency and reduce data transmission

overhead, resulting in more efficient use of hardware

resources — an essential consideration for devices with

constrained capabilities. The design of other operators was

tailored to hardware constraints, further accelerating network

inference and achieving simultaneous optimization of both

resources and processing speed.Additionally, the use of

SpinalHDL, a high-level hardware description language,

allowed for flexible configuration of FPGA parameters. This

flexibility ensures that developers can adjust hardware

implementations without focusing on low-level details,

thereby enhancing adaptability across various hardware

configurations. An instruction-based execution flow control

was also implemented to support future network upgrades,

significantly improving the flexibility and reconfigurability

of the hardware design.The proposed accelerator was

deployed on the Virtex UltraScale+ VU9P FPGA and

evaluated on the CamVid and CityScapes datasets. It

achieved an accuracy of 74.3% on CamVid and 72.7% on

CityScapes, with processing speeds nearing real-time

performance. These results demonstrate the accelerator's

potential in real-time semantic segmentation tasks, offering

both enhanced speed and resource efficiency compared to

existing solutions.

 This document is organized as follows. Section 2 introduces

related work and highlights its shortcomings. Section 3

introduces the design workflow and the specific hardware

architecture. It includes an analysis of the network structure

and the implementation of specific hardware operators, along

with proposed optimization strategies for the accelerator.

Section 4 presents the performance results of the final

solution, including experimental process, accelerator

execution time, and comparisons with other FPGA-based

works. Section 5 concludes the work and providing

suggestions for future work.

II. RELATED WORK

 An autonomous driving system is comprised of four

principal components:perception,self-localization,

prediction, and decision-making. Among these, perception is

of fundamental importance, as subsequent prediction and

decision-making are contingent upon it. The process of

perception, however, begins with the acquisition of relevant

information from the vehicle's surroundings[9]. In recent

years, there has been a notable increase in interest in object

detection. This surge in interest has led to the proposal of

various optimization schemes, aimed to enhance the

performance of object detection[10]-[11]-[12]. Moreover,

perception is not solely concerned with object detection; it

also encompasses semantic segmentation. A principal

distinction between semantic segmentation and object

detection is that the former offers a more comprehensive

understanding of the scene, thereby enabling more precise

prediction and decision-making[13]. Consequently, the

existing solution cannot be readily applied to optimize

semantic segmentation.

 Initial developments in semantic segmentation were

initiated by Fully Convolutional Networks (FCNs), which

expanded network models to facilitate pixel-level predictions,

thereby pioneering end-to-end training[14]. In order to

enhance the precision of their results, numerous semantic

segmentation models started encoding more spatial

information or expanding the receptive field[15]-[16]-[17],

resulting in a significant increase in the overall model size.

Networks such as U-Net and SegNet applied an

encoder-decoder architecture to enhance segmentation

accuracy by recovering spatial information[18]-[19]. However,

some information remained difficult to recover. which

greatly enhance the capture of multi-scale contextual

information and significantly improve segmentation

performance[15]-[20]-[21]. Despite these advancements in

accuracy, these methods also increased model complexity

and computational cost, rendering real-time applications

challenging.The BiSeNetV1 network adopts a bilateral

network structure to cope with the loss of spatial information

and the shrinkage of receptive fields, while preserving spatial

details as much as possible and reducing computational costs,

using fewer convolutional layers. There has been a certain

improvement in real-time performance[8].

 Previous research sought to accelerate inference by

reducing the size of the input image[22] or by pruning network

channels[23]. Nevertheless, this approach frequently resulted

in a reduction in accuracy, which was inadequate to fulfill the

criteria for precision. To address these issues, a pipelined

structure using depthwise separable convolutions was

proposed[24], which decomposes standard convolutions into

depthwise convolutions (for filtering) and pointwise

convolutions (for combining features), resulting in the

significant reduction of the computational load by

approximately nine times. However, this approach might lead

to the isolation of information between channels, thereby

impairing the network's ability to capture inter-channel

correlations and affecting overall performance. Consequently,

focusing solely on the network was insufficient to achieve an

optimal balance between speed and accuracy. This led

researchers to investigate the potential of embedded

processors.

 Nevertheless, inexpensive embedded processors are

capable of achieving a processing speed of tens of GFLOPs

(one billion floating-point operations) per second, which is

insufficient for near real-time processing of semantic

segmentation. If speed is pursued without consideration of

http://www.ijerm.com/

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 38 www.ijerm.com

other factors, dedicated design circuits can achieve optimal

performance and energy efficiency. For example, Li

described a dedicated CMOS image sensor (CIS) chip that

achieves optimal computational efficiency and power

consumption through the use of specialized circuit design[25].

However, the configurability of customized circuits is

severely limited, which presents a significant challenge in

subsequent algorithm optimization. FPGA serves as a

compromise solution, offering the potential for specialized

hardware accelerators for various neural network models. Its

internal hardware circuits are fixed, while its

reconfigurability is superior to that of ASICs. High

performance efficiency in network inference is demonstrated

by FPGA primarily due to its ability to be reconfigured

optimally for different network models.

 A number of hardware accelerators for semantic

segmentation have already been put forth for consideration.

For example, Ghielmetti introduced a hardware acceleration

scheme based on ENet, implemented using HLS4ml[3]. This

scheme was converted to hardware code through high-level

synthesis (HLS) and reduced resource utilization through

quantization and filter pruning, achieving an image

processing latency of 4.9 ms. However, only 36.8% of the

mean Intersection over Union (mIoU) was achieved in the

dataset. Despite the advantages of HLS in providing a more

abstract representation of external modules and interfaces,

thereby facilitating the implementation of intricate control

logic, it is currently deficient in the capacity to pursue the

optimization potential inherent to RTL design at a more

granular level. To further enhance precision, Mori proposed

the implementation of the DeepLabv3+ network structure,

which has demonstrated considerable advancements in

algorithmic accuracy[26]. In an effort to reduce inference time,

genetic pruning of channels was employed to minimize the

model's parameter count. Nevertheless, data transfer

optimization was insufficient, resulting in significant delays.

Furthermore, the network itself was highly intricate, with an

ultimate inference time of 0.67s, rendering it unsuitable for

real-time applications.

 In order to reduce the complexity of the network and

facilitate its deployment to hardware accelerators, a number

of optimization techniques have been proposed. A common

method is to employ quantization techniques to reduce the

size of the data model by utilizing more straightforward

weight representations[27]. Quantitative techniques reduce the

bit width representation of parameters from 32-bit

floating-point to lower bit widths, thereby markedly reducing

the area and power consumption of model inference[28].

Moreover, ternary weight networks[29] and binary neural

networks employ quantization of weights to lower bit widths

(such as ternary and binary), thereby reducing storage

requirements and computational complexity. It is important

to note, however, that extreme quantization can have a

significant impact on the accuracy of the model. For instance,

while binarized networks, while optimal in data size, require

2 to 11 times more operations and weights than networks

with 8-bit fixed-point weights to achieve similar accuracy on

small networks[30]. Analysis in Gysel demonstrated that 8-bit

fixed-point data is almost as accurate as 32-bit floating-point

data[31].

 An additional approach to model optimization is model

compression, which entails the reduction of the number of

weights or activations to lower memory and computational

requirements. For instance, Han applied Huffman coding to

trim and compress model data, predominantly in fully

connected layers, resulting in a 91% reduction in the number

of weights without compromising accuracy[32]. However,

weight trimming was less effective in convolutional layers,

where activation functions were more commonly employed

to set outputs to zero rather than trimming weights, thereby

reducing computation. Given that semantic segmentation

networks lack fully connected layers, this technique is more

suited to object detection.

 A multitude of hardware accelerators have endeavored to
achieve a balance between efficiency and flexibility through
the implementation of diverse optimization techniques.
However, the rapid evolution of algorithms presents a
significant challenge for hardware architects. This difficulty
increases the gap between algorithms and hardware
accelerators[33]. To address this bottleneck, a synchronous
dataflow architecture based on hardware reconfiguration
technology was proposed by[34]. The FPGA is reconfigured,
allowing the architecture and hardware resources to be
adjusted according to different network layers. This
adjustment achieves significant acceleration. However, a
drawback exists: the accelerator needs to be reconfigured for
different sub-graphs.

 This paper proposes a novel configurable semantic

segmentation accelerator using SpinalHDL, which is more

user-friendly compared to traditional methods. SpinalHDL

simplifies RTL code generation, making it easier for

researchers to understand and apply these codes while

providing greater flexibility in hardware configuration.

Concurrently, the hardware implementation of the operators

within the network has been completed, and through network

analysis, optimization operations have been performed on

convolutions with excessive computational complexity,

thereby conserving resources and enhancing computational

efficiency. In particular, a lightweight instruction set was

devised. The controller parses instructions to control the data

flow, ensuring that the accelerator is not limited to supporting

specific network architectures. In future development, the

corresponding data flow configuration can be rapidly

modified to align with different algorithmic models. This

modification markedly enhances the efficiency of the

development process, rendering it well-suited to a multitude

of application scenarios.

III. THE PROPOSED METHOD

A. Network Model Analysis

 BiSeNetV1 is designed to balance accuracy and processing

efficiency in semantic segmentation by utilizing a

dual-branch structure. The Spatial Path focuses on extracting

high-resolution features, preserving image details and

maintaining real-time performance through shallow

convolutional layers. In contrast, the Context Path captures

global semantic features, which are aggregated using deep

convolutional layers and global average pooling[8]. The

network operates in five stages. In the first stage, spatial

details are extracted using convolutional layers. The second

stage reduces the feature map size via max pooling, which

http://www.ijerm.com/

Design and Implementation of Scalable Accelerator for Semantic Segmentation in Self-driving

 39 www.ijerm.com

increases the receptive field. In the third stage, rich

contextual information is captured during downsampling,

facilitated by the ResNet18 backbone. The fourth stage

integrates spatial and semantic information through the

Feature Fusion Module. Finally, the fifth stage restores the

resolution of the segmentation map through upsampling.An

analysis of the latency and floating-point operations (FLOPs)

distribution of various operators in the BiSeNetV1 model (as

shown in Fig.1 revealed that most computational resources

are allocated to the stages responsible for spatial feature

extraction and deep semantic information capture.

Convolution operations dominate in terms of both latency

and FLOPs, indicating their significant impact on overall

computation. Convolution primarily involves

multiply-accumulate operations, and while these operations

are computationally straightforward, their volume makes

sequential execution on a CPU time-consuming. Thus,

parallel computation on hardware provides an effective

optimization strategy, with the primary focus on accelerating

convolution operators.In addition to convolution, operators

such as addition (add), multiplication (mul), and mean

pooling also contribute to the computational load. Although

their frequency is lower, these operations can still be

optimized through hardware acceleration to improve overall

performance. To further conserve hardware resources, the

network backbone is trained using ResNet18, and the

network model is modified by adjusting the activation

function to Leaky ReLU. Large convolution kernels are

uniformly replaced with standard 3x3 convolution kernels.

After training, the network achieved accuracies of 75.4% on

the CamVid dataset and 73.6% on the CityScapes dataset.

Detailed optimization strategies and techniques will be

discussed further in subsequent sections.

Fig.1 Latency and FLOPs Distribution of Operations

B. Hardware Implementation Workflow Overview

 The proposed hardware accelerator workflow is illustrated

in Fig.2. The workflow is comprised of five stages which

integrate the design of the hardware accelerator with the

corresponding instructions. The initial stage of the process

entails training the model using the PyTorch framework. This

involves training the dataset, optimizing the network

hyperparameters, and quantizing the model to reduce the

number of MAC operations, thereby facilitating the

deployment of the model on hardware with greater ease. The

second stage entails the description of the hardware

architecture corresponding to the network model, which is

achieved through the use of SpinalHDL. SpinalHDL's highly

parameterized nature facilitates rapid automated hardware

design, including hardware implementation and parameter

configuration. The third stage involves using Vivado IDE to

simulate, synthesize, and implement the RTL code and TCL

scripts generated by SpinalHDL, producing the necessary

hardware bitstream. The fourth stage involves transferring

the instructions, model data, and weight information from the

PC to the FPGA device. This stage ensures the accurate

transmission of data and the establishment of an appropriate

interface for communication with the FPGA. Ultimately, the

network application runs on the FPGA in the fifth stage.

Fig.2 Workflow overview

C. The Proposed Hardware Architecture

 We adopted a collaborative approach where the PC and

FPGA worked in close conjunction to execute data-intensive

tasks, as illustrated in Fig.3. The initialization process, which

entailed the loading of input feature maps, weight vectors,

and operation instructions, was conducted by the PC, while

the FPGA was responsible for the efficient processing of data.

Control signals and instructions were transmitted from the

PC to the FPGA via the AXI-Lite bus and stored in the

instruction register. Moreover, the transfer of computational

data and results were efficiently transferred between the PC

and FPGA's DRAM was conducted with optimal efficiency

via the high-throughput AXI-Stream bus. Upon accelerator

initialization, the instructions stored within the register were

parsed by the controller, which also scheduled computational

resources and managed data flow between DRAM and

on-chip buffers. A DRAM interface module was designed to

optimize data flow and memory access performance. To

enhance isolation and efficiency, the on-chip buffers were

partitioned into weight, output, and data buffers. The

computation module was subdivided into two distinct

sub-modules, namely the Conv and Shape sub-modules. The

Conv module was responsible for performing convolution

operations, while the shape module included units such as

maximum pooling, concatenation (concat), add, upsampling,

mul, and mean pooling, which were utilized to support

diverse operations. The ports of the multiplexer and

demultiplexer, as well as the arbitration module, were

described using SpinalHDL, facilitating parameterization and

configuration to accommodate different numbers of

functional modules and markedly enhancing iterative

development efficiency. When data flowed to the Shape

module, the demultiplexer module orderly distributed tasks,

and after operations were completed, the results were

collected by the multiplexer module and transmitted to

DRAM in accordance with the instructions.

http://www.ijerm.com/

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 40 www.ijerm.com

Fig.3 Accelerator process

 CONV As indicated in Fig.1, convolution is the most

resource-intensive and time-consuming computation in the

network. During the convolution process, the energy

consumed by data movement and memory access was found

to be considerably higher than that of the convolution

computation itself[35]-[36]. Due to the limitations of bandwidth,

the cost of transferring data from external memory to internal

memory was considerably higher than the transfer cost

between on-chip memories[28]. The convolution operation

primarily comprises a series of multiplication and

accumulation cycles,which are performed as the window

slides. To enhance efficiency, we opt to perform unfolding

parallel computation on specific layers of the convolutional

loop, encompassing the kernel size, input channel, and output

channel. This approach leads to a notable reduction in

computation time.This approach enhances computational

efficiency while avoiding an unacceptable increase in

hardware resources and power consumption.

 We propose an efficient convolutional module design,
capable of flexibly handling 3x3 and 1x1 convolution
operations. The design employs loop optimization techniques,
including loop unrolling, loop tiling, and loop permutation [29],
to enhance computational efficiency and reduce energy
consumption associated with data movement and memory
access. As illustrated in Fig.4, prior to entering the
convolutional module, the feature maps are rearranged and
concatenated into a 3x3 convolution form through a
multiplexer to guarantee data flow consistency and module
reusability.

Fig.4 Implementation of convolution

 The padding requirements are determined by the padding

module based on instructions, thus avoiding performance

degradation. A double-buffering strategy is employed by the

data generation module to cache two rows of input feature

map data, thereby reducing external memory access and

accelerating the computation process. The convolution

computation order is adjusted by adopting a channel-first

strategy, extracting data blocks of size 𝑘𝑥 × 𝑘𝑥 × 𝐶 from

local input feature maps and simultaneously computing the 𝑘𝑥 × 𝑘𝑥 points of the C convolution kernels are

simultaneously computed. This approach achieved

parallelism in terms of input channels, output channels, and

convolution kernel size.

 Following the completion of each computation, the next

set of C channel data is calculated using the current

convolution kernel's subsequent set of C channel data. The

data is accumulated in the temporary buffer until all channels

of the point have been computed, resulting in a complete

output feature map point for the C channels. Subsequently,

the input feature map is traversed from the initial channel of

the aforementioned point. The calculations are performed

with the C channels of the next set of P convolution kernels.

This process continued until all convolution kernels and all

channels of the local point in the input feature map have been

computed. The sliding window is then moved along the row

direction to the next pixel, continuing until the entire row is

processed. It then moved down to the next row, repeating this

process until the entire output feature map had been

computed.

 In the design of our accelerator, the input channel N is

divided into N/C groups, with each group containing C

channels. This transformation results in the conversion of the

original single-layer loop into a two-layer loop structure. This

allows acceleration of the C iterations of the inner loop by

leveraging hardware parallelism, resulting in a speedup of

N/C compared to the original serial computation.

Furthermore, it enables an input channel parallelism of C.

During each computation, the C channels of the input feature

map are processed with the corresponding C channels of the

convolution kernel, resulting in intermediate accumulation

for one output channel, which is temporarily stored in a

buffer. Once the computation and accumulation for a single

C-channel block are complete, N/C iterations are necessary to

compute all channels of the input feature map, thereby

obtaining the complete output for a single channel. Following

the completion of the convolution, quantization is required.

However, if the output channels are not computed in parallel,

each quantization would process only a single point from a

given output channel of the feature map, thereby

underutilizing the FPGA's parallelism.

 To address this issue, the output channels are grouped.

The M convolution kernels are divided into M/P groups, and

the kernels within each group are computed simultaneously,

achieving an output channel parallelism of P. The results of

each group are stored in a temporary buffer and are

accumulated with the results from the next group of P

convolution kernels. This requires M/P iterations to compute

the partial sums for all output feature map channels for one

point.

 Furthermore, convolution kernels are typically of a

relatively small size, and larger kernels could be replaced by

multiple smaller ones. Therefore, the 𝑘𝑥 × 𝑘𝑥 window of the

input feature map and the corresponding convolution kernel

rows and columns are fully unrolled, allowing the

computation of 𝑘𝑥 × 𝑘𝑥 pixels in parallel within a single

clock cycle. The 𝑘𝑥 × 𝑘𝑥 sized input feature map and kernel

weights are transmitted in conjunction to the corresponding

DSP units, where their computations are synchronized within

a single clock cycle. This is achieved through the use of an

http://www.ijerm.com/

Design and Implementation of Scalable Accelerator for Semantic Segmentation in Self-driving

 41 www.ijerm.com

adder tree, which accumulates the partial results and

temporarily stores them in a buffer.

 The input feature map is reused N/C times, and the

weights were reused 𝑂ℎ × 𝑂𝑤 times, effectively reducing

memory access costs. The convolution quantization module

maps the output, ensuring efficient representation and

transmission within the constraints of the FPGA resource

constraints, and producing the final quantized convolution

result.

 Maxpool The max pooling layer is employed as a

downsampling technique, whereby the spatial dimensions of

the feature maps are reduced by selecting the maximum value

within the pooling window. Typically, a 2x2 pooling window

is utilized, which not only minimizes the computational load

of subsequent layers but also enhances the model's resistance

to spatial transformations and distortions, thereby preserving

critical features such as edges and textures[37]. The data

processing in our max pooling implementation, depicted in

Fig.5 is carried out based on row parity using a Mux. Odd

rows are initially stored in the col buffer, and upon the arrival

of even rows, they are element-wise compared with the data

in the col buffer, with the maximum values then stored in the

row buffer. This approach optimizes both data flow and

processing speed, thereby reducing the frequency of memory

accesses.

Fig.5 Implementation of MaxPool

 Concat, Add The process of feature integration typically

entails the concatenation and addition of data. The concat

operation merges input tensors along a specified dimension,

thereby maintaining the independence of each feature. This

enables the network to learn diverse features. The add

operation performs an element-wise addition of two tensors

along the same dimension, effectively fusing the features.

This operation is commonly employed in residual networks

to mitigate issues related to gradient vanishing. We proposes

an efficient hardware implementation method for integrating

feature maps through Concat and Add operations. As

illustrated in Fig.6, this method employs flexible instruction

control to enable dynamic switching between concat and add

operations, thereby optimizing hardware resource utilization

and enhancing processing efficiency. Initially, the input data

is stored in buffers to ensure its proper formatting prior to

quantization. The quantization operation converts input data

from high-precision format to optimized fixed-point

representation, thereby reducing the computational load and

adapting to hardware constraints, and minimizing precision

loss. Based on instructions specific to neural network layers,

the hardware unit selects between the add or concat

operations. Add involves the element-wise addition of data

from disparate buffers, whereas concat integrates data from

two buffers along a specified dimension, thereby facilitating

enhanced information integration. Subsequent to the

execution of these operations, the processed data is

forwarded to the subsequent network layer or utilized for

further analysis, thereby achieving effective feature map

integration and downsampling.

Fig.6 Implementation of Concat, Add

 Upsampling In the process of extracting network features,

the dimensions of the input feature map frequently undergo a

gradual reduction. It is common practice to employ

upsampling techniques in order to restore the feature map to

its original dimensions. Among these techniques,

interpolation methods enlarge the feature map by inserting

new pixels between existing ones. The most prevalent

methods include nearest neighbor and bilinear interpolation.

Nearest neighbor interpolation is preferred method for

real-time processing tasks due to its rapid computation time.

As illustrated in Fig.7, the input feature map is initially stored

in the input buffer for the purpose of temporarily holding the

current feature map data. The operational unit executes a

copy operation on each buffer element, duplicating resulting

in the replication of each input element into multiple output

elements aligned in rows or columns. This procedure directly

generates an enlarged feature map and temporarily stores the

duplicated data elements in the row buffer. As new input data

entered the input buffer, the row buffer data is output

synchronously within the same clock cycle, facilitating

pipeline operation and enhancing data processing efficiency.

This pipeline strategy ensures processing continuity,

maximizes throughput, significantly reduces time costs, and

enhances FPGA performance in upsampling tasks.

Fig.7 Implementation of Upsampling

 Mul Due to differing levels of feature representation

between the two types of features in the network, direct

merging is impractical. The mul operator plays a critical role

in the reweighting of features through the utilisation of

weight vectors. This process enables the dynamic adjustment

of the spatial feature map within each channel, with varying

weights assigned to different spatial regions. The objective is

to preserve and enhance high-weight features while

attenuating low-weight ones. This adaptive weighting

strategy enables the network to focus on regions rich in

information content, thereby enhancing sensitivity to crucial

features and refining boundary delineation precision in

segmentation tasks[8]. As illustrated in Fig.8, this module

receives inputs from two distinct buffers: one containing

activated weights and the other comprising the input feature

map. These weights serve as the primary filters for feature

extraction, remaining static throughout the computations.

The input feature map data streams continuously. Within the

operational unit, each element of the input feature map

undergoes element-wise multiplication with its

corresponding weight value. During each processing cycle,

the operational unit multiplies the weights from the weight

buffer with corresponding feature map data from the input

buffer, accumulating the results to derive a single output

feature value. These accumulated results are subsequently

quantized and directly forwarded to the next network layer.

http://www.ijerm.com/

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 42 www.ijerm.com

Fig.8 Implementation of Mul

 Meanpool In order to guarantee the greatest possible

receptive field and to incorporate global contextual

information into the feature map, global average pooling is

employed, thus enabling the network to capture

comprehensive semantic information. This process involves

the condensation of spatial features into a single vector, while

ensuring the preservation of the channel dimension.

Subsequently, the vector is subjected to a 1x1 convolution

and batch normalization, resulting in the generation of a

channel attention map. This approach not only reduces the

model's complexity but also enhances the network's ability to

learn essential features by globally aggregating information,

thereby improving semantic integration across different

scales[8]. Illustrated in Fig.9, input feature map data first

enters a multiplexer, then row-wise temporarily resides in the

column buffer based on buffer availability. The column

buffer temporarily holds single-row feature map data for

subsequent accumulation. As each row is accumulated in the

column buffer, new feature map data arriving is accumulated

element-wise with existing data at corresponding positions in

the buffer. This accumulation ensures merging of feature map

data at identical positions, forming the basis for subsequent

average value computation. Once all input data is processed,

the accumulated values are divided by the total number of

elements in the feature map within the operational unit in

order to compute the global average value for each channel.

These calculated averages undergo further processing via the

quantization unit, which enables the data format to be

adjusted. This results in a reduction in representation

complexity and an optimization of overall computational

efficiency and resource utilization. Finally, the processed

data, which are now quantized averages, are output for use in

subsequent layers of the deep neural network.

Fig.9 Implementation of Meanpool

 Controller The controller employs 32-bit fixed-length

instructions to oversee the data path of the accelerator. A

specialized instruction set is defined for the purpose of

executing neural networks. This includes control and status

instructions for conv and shape operations, configuration

parameters for operators, and direct memory access (DMA)

control instructions, as shown in Table 1. Upon the

commencement of an operator's execution, the initial

instruction is first retrieved from the register by the controller,

the operator type is determined, and the corresponding

computational task is assigned to the appropriate processing

unit. In order to guarantee the reconfigurability of the

network, the instructions were responsible for controlling the

configuration parameters of the computational units. By

analyzing the configuration parameter instructions, different

configurations could be applied to various operators, thereby

markedly enhancing the efficiency of the development

process. Furthermore, the controller is responsible for

managing data transmission throughout the computation

process. To enhance data transfer efficiency, the accelerator

employs DMA control. Consequently, the DMA is informed

by the controller of the data size and address space for read

and write operations during each computation, ensuring

optimal data processing. After completing the computation of

each layer, the controller returns the status information of that

layer. Upon receiving the correct return signal, the controller

initiates the computation for the next layer.
Table1 Example of supported instructions

Instruction Width Section R/W Description

Conv/shape
control

32 [3:0] W Execute specific operator

Conv/shape
state

32 [3:0] R Read the operator state

IMG_in shape

32 [31:22] W Channel_in
32 [21:11] W Col_in
32 [10:0] W Row_in

IMG_out shape

32 [31:22] W Channel_out
32 [21:11] W Col_out
32 [10:0] W Row_out

Quan param 32 [31:0] W Scale、Zero

Conv Config

32 [31] W En_Stride
32 [30] W En_Padding
32 [29] W En_Activation
32 [28:27] W Conv Type
32 [26:0] W Weight Num

DMA Size 32 [31:0] W Write/Read Size
DMA Addr 32 [31:0] W Write/Read Addr

D. The proposed Optimization Method

 Agile Development Technique In the contemporary field

of hardware design, the enhancement of design efficiency has

emerged as a prominent area of focus, alongside the

optimization of performance. The popularity of agile

development techniques, which were renowned for their high

abstraction capability and robust encapsulation, has grown

considerably in recent times[38]. These techniques offer

several advantages: (i) high flexibility, which facilitates the

integration of reusable circuit modules in large-scale designs

and simplifies circuit topology design. (ii) high coding

efficiency, which allows for the straightforward instantiation

and interconnection of diverse circuit modules, while its

comprehensive error-checking functionality minimizes the

necessity for supplementary electronic design automation

(EDA) tools for code verification. (iii) Advanced

development tools: notable examples include Chisel and

SpinalHDL. In our accelerator design, the selection of

SpinalHDL is informed by the decision to leverage the Scala

library, with the objective of reducing design complexity[39].

This approach allows users to modify accelerator-relevant

parameters in order to adapt different resources without

requiring in-depth knowledge of internal details.

 Quantization Typically, a CNN is trained with 32-bit

floating-point data on a GPU. The latest generation of GPUs

is capable of handling 16-bit floating-point formats, yet these

remain more complex than fixed-point data formats. The

reduction in bit width necessitates the coarse quantization of

data. The range of data values observed across different

layers in a CNN is typically quite broad. Therefore, a uniform

quantization with a fixed-point data format for all layers may

result in a significant performance degradation. To address

this issue, we propose an 8-bit mixed quantization strategy,

with the objective of adapting more effectively to the diverse

characteristics of the data. Symmetric quantization is

employed for data exhibiting minor variations, thereby

http://www.ijerm.com/

Design and Implementation of Scalable Accelerator for Semantic Segmentation in Self-driving

 43 www.ijerm.com

facilitating the process. In contrast, asymmetric quantization

is employed for data exhibiting significant variations, thereby

ensuring the maintenance of precision while minimizing

information loss during quantization. The initial step in our

quantization process involves training the network using a

floating-point (Float32) data format. After the training phase,

we perform a layer-by-layer analysis to gather statistical

information about the data. Specifically, we calculate the

skewness and range values of the parameters in each layer.

These statistics help guide the determination of the optimal

threshold values for quantization.For each layer, we evaluate

multiple potential threshold positions by quantizing the

floating-point data to an 8-bit integer (Int8) format. After

quantization, the accuracy of the model is tested to assess the

impact of each threshold on the performance. Based on this

evaluation, the optimal set of thresholds that minimizes

accuracy loss is selected and stored for each layer.In some

cases, a specific layer may exhibit sensitivity to quantization,

meaning it is not well-suited for direct application of this

strategy. When this occurs, additional adjustments are made

—such as using mixed-precision formats or adjusting the

quantization scale— to ensure that there is no significant

degradation in accuracy. This process allows us to achieve

efficient quantization while maintaining the overall

performance of the network. By carefully optimizing the

quantization thresholds and making layer-specific

adjustments, we are able to reduce the model's bit width from

Float32 to Int8 without significantly sacrificing accuracy.

This approach ensures that the network can be deployed on

resource-constrained hardware platforms while maintaining a

high level of performance.The efficacy of this strategy is

demonstrated by achieving 74.3% mIoU on the CamVid

dataset and 72.7% mIoU on the CityScapes dataset. These

outcomes illustrate the capacity of this approach to

effectively reduce model size and inference time while

maintaining accuracy.

 DSP Optimize The most computationally intensive

operations in neural networks, such as matrix multiplication

and convolution, are typically executed by Digital Signal

Processors (DSPs). While INT8 quantization reduces

memory storage and bandwidth requirements while

maintaining accuracy, the bit width of modern DSPs is

significantly larger than the quantized data, leading to

inefficiencies in DSP utilization. To address this issue, we

implemented specific DSP optimization techniques,

including the use of the DSP48E2 module, which is equipped

with an 18× 27-bit multiplier.For INT8 operands, each

DSP48E2 module is capable of computing two dot products

in parallel, instead of just one, by processing two sets of INT8

weights and one feature map simultaneously. This

parallelism is achieved by concatenating two INT8 weights

to align with the DSP bit width, allowing the module to

handle twice the amount of data per cycle. In our design, this

method efficiently utilizes DSP resources, as matrix

multiplication and convolution are highly parallel operations.

Generating two dot products with three vectors is a common

approach in neural networks, and this optimization

significantly accelerates the computation.Through this

approach, two dot products are computed simultaneously

within a single clock cycle, effectively doubling DSP

throughput and reducing the required DSP resources by half.

This optimized design not only improves hardware resource

utilization but also significantly lowers the power

consumption of the accelerator. By processing two

computations in parallel within each clock cycle, the overall

energy efficiency of the system is greatly enhanced, making

it suitable for deployment in resource-constrained

environments.

IV. EXPERIMENT

A. Experimental Setup and Workflow

 The workflow for the designed hardware accelerator is
illustrated in Fig.1. In this process, we first utilized the
PyTorch framework for model training and quantization.
During the actual operation of the hardware accelerator, the
FPGA's DRAM was transferred with the quantized data and
instructions from the host computer via the PCIe bus. The
network inference tasks were executed by the accelerator
based on these instructions, and the result data was returned
to the host computer via the same PCIe bus upon task
completion. It is noteworthy that the core focus of this study
was the acceleration of the network inference process,
excluding other stages such as image preprocessing and
display. Detailed evaluation reports and information were
provided in the later sections of the document.

In this section, experiments were conducted based on the

aforementioned workflow. The model was trained and

quantized using PyTorch 2.2.1 and the CUDA 11.8 toolkit on

an NVIDIA RTX3070ti GPU. Finally, the accelerator was

deployed on a Virtex UltraScale+ VU9P FPGA, with all

hardware implementations developed using SpinalHDL and

synthesized and implemented using Vivado 2021.2.

B. Datasets

 CamVid This dataset is the first video dataset with object

class semantic labels, containing 701 images of urban street

scenes, all with a resolution of 960×720. It is divided

into a training set (367 images), a test set (233 images), and a

validation set (101 images). The dataset includes eleven

major feature types: Sky, Building, Pole, Road, Pavement,

Tree, SignSymbol, Fence, Car, Pedestrian, and Bicyclist.

 CityScapes This dataset focuses on the semantic

understanding of urban street scenes, containing images from

50 different cities. It includes 5000 high-quality pixel-level

annotated images of driving scenes in urban environments,

all with a resolution of 2048x1024. It is divided into a

training set (2975 images), a test set (1525 images), and a

validation set (500 images). The dataset includes nineteen

major feature types: road, sidewalk, building, wall, fence,

pole, traffic light, traffic sign, vegetation, terrain, sky, person,

rider, car, truck, bus, train, motorcycle, and bicycle.

C. Preprocessing and Hyperparameters

 For all images, we resize them to 640x640 during both

training and inference. Additionally, for the training set, we

use standard data augmentation techniques, including

random scaling, random horizontal flipping, normalization,

and data shuffling.

 The training hyperparameters are as follows: Learning

rate scheduling follows a "poly" policy with an initial

http://www.ijerm.com/

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 44 www.ijerm.com

learning rate of 0.005.Weight decay is set to 0.5x10−4.The

number of iterations is 20,000.Batch size is 8.Cross-entropy

loss is used as the loss function.

D. Quantization Accuracy Evaluation

 In this study, we use mIoU as the evaluation metric to

measure segmentation performance on the CamVid and

CityScapes datasets. The purpose of quantization is to reduce

model complexity and hardware resource usage. In the

experiments, we tested three different quantization methods,

as shown in Table 2, all using INT8 format: symmetric

quantization for weights and inputs, asymmetric

quantization, and a hybrid quantization combining both

symmetric and asymmetric methods. Hybrid quantization

strategy performed best on both datasets, achieving mIoU of

74.3% on the CamVid dataset and 72.7% on the CityScapes

dataset.
Table 2 Quantization Method Performance

 Accuracy (%)

Method CamVid CityScapes

Original Accuracy 75.4 73.6
Symmetric Quantization 73.5 72.2
Asymmetric Quantization 73.9 72.6
Mixed Precision Quantization 74.3 72.7

 In further experiments, as illustrated in the Fig.10, drop in

model accuracy is not significant at higher quantization bit

widths, mainly because the model size did not significantly

reduce. When the quantization bit width drops below 8 bits,

the accuracy loss becomes very noticeable. Based on this

observation, we selected 8-bit quantization as our strategy.

mIoU on the CamVid dataset decreased by 1.6 percentage

points compared to 32-bit floating-point computation, and by

1.9 percentage points on the CityScapes dataset. Despite this

reduction in accuracy, our model size was reduced by a factor

of four. Loss in quantization accuracy is primarily due to

clipping and rounding errors during the quantization process,

which often conflict with each other. Semantic segmentation

tasks are more sensitive to low bit-width quantization

compared to image classification tasks, resulting in more

pronounced accuracy loss in semantic segmentation.

Fig.10 Impact of Quantization Bit Width on Accuracy

E. Comparison of Previous Work

 We compare our work with previous studies on two

datasets, with detailed results presented in Tables 3 and 4. Yu

primarily contributed an 8-bit quantization strategy, which

minimized accuracy loss to only 2.04%. In contrast, our

post-training quantization method resulted in a mere 1.6%

accuracy drop, precision of the OpenCL accelerator was also

limited by the network's structure[41]. Miyama used a basic

U-Net architecture with quantized weights and activations[27].

Due to the network's simplicity and reduced input image size,

low-bit quantization had minimal impact on accuracy,

leading to impressive results. However, its practicality is

limited due to its narrow applicability. Shimoda focused on

optimizing networks with a large number of parameters using

filter pruning methods[42]. While effective, the rise of

lightweight deep learning models has reduced the relative

benefits of this approach. Lightweight models maintain high

accuracy with fewer parameters, significantly improving

efficiency and applicability.

CamVid
work OpenCL

accelerator[41]
3-bit

Quantized
CNN[27]

SDCN
accelerator[42]

our

Device Arria-10
FPGA

Alveo
U200

 zcu102 VU9P

Precision 8-bit quant 3-bit quant - 8-bit
fix-quan

Net SegNet-basic Unet Alex
Net-based

SFCN

BiSeNetV1

Input size 360x480 256x256 300x225 640x640
Frame rate

(FPS)
57 123 165 25

Frequency
(MHz)

- 300 100 200

DSPs - 882 - 1188
mIoU(%) 57.91 67.8 42.62 74.3

 In contrast, Jia used the E-Net network and the Xilinx

Vitis-AI compiler to convert floating-point models into

fixed-point models executed by the DPU. The limitation of

their method is its applicability to specific network structures,

lacking generalization[43]. Mori adopted the lightweight

DeepLabV3+ network, focusing on pruning model

parameters. Although it showed significant performance

improvement over CPU, it still fell short of real-time

requirements[26]. Le utilized a U-Net-based structure with

4-bit quantization, excelling in resource utilization but

achieving the lowest accuracy among all compared works,

highlighting a trade-off between accuracy and resource

usage[44].

CityScapes
work Real-time

FPGA
accelerator[43]

channel
pruning
CNN[26]

SDCN
accelerator[44]

our

Device ZYNQ 7035
FPGA

Arria-1
0 FPGA

 Alveo U250
FPGA

VU9P

Precision 8-bit quant - 4-bit quant 8-bit
fix-quant

Net E-Net DeepLa
bV3+

U-Net BiSeNetV1

Input size 1024x512 960x96
0

256x256 640x640

Frame rate
(FPS)

 32.9 1.4 22.6 24

Frequency
(MHz)

- 200 152 200

DSPs 689 - 1043 1188
mIoU(%) 63.9 65.29 62.9 72.7

 Our method employs the BiSeNetV1 network with an input

size of 640x640. On the CamVid dataset, it achieved 25 FPS

at a 200 MHz operating frequency with a mIoU of 74.3%. On

the CityScapes dataset, it reached 24 FPS and a mIoU of

72.7%. This performance is crucial for practical applications,

demonstrating an excellent balance between accuracy and

real-time performance. Our work proves to be a

http://www.ijerm.com/

Design and Implementation of Scalable Accelerator for Semantic Segmentation in Self-driving

 45 www.ijerm.com

general-purpose solution suitable for a wide range of

datasets, meeting high-performance requirements. This dual

optimization strategy not only enhances the adaptability of

the network but also ensures the efficiency of hardware

accelerator deployment.

 Part of semantic segmentation results are shown in Fig.11,

the two results on the left are from the CamVid dataset, and

the two results on the right are from the CityScapes dataset.

Fig.11 semantic segmentation result samples

V. CONCLUSION

 In this paper, we proposed a reconfigurable semantic

segmentation accelerator that addresses the issue of speed

and accuracy imbalance in semantic segmentation. The

design was rendered more user-friendly by virtue of the fact

that SpinalHDL is highly parameterized, thereby facilitating

adaptation to a variety of neural networks through a modular

design. To address the complexity of scheduling between

advanced algorithms and hardware, a lightweight controller

was designed for the purpose of controlling the execution of

data flow instructions. This had the potential to significantly

reduce the time required for subsequent network iterations

during the development process.

 To reduce inference time, we adopted a mixed

quantization strategy, which had proven effective.

Additionally, we optimized convolution computations to

fully exploit FPGA parallelism. The accelerator was

implemented on the Virtex UltraScale+ VU9P FPGA and

tested on two common datasets, showing significantly better

performance than previous works.

REFERENCES

[1] Jogin, M., Madhulika, M., Divya, G., Meghana, R., Apoorva, S., et al.:
Feature extraction using convolution neural networks (cnn) and deep
learning. In: 2018 3rd IEEE International Conference on Recent
Trends in Electronics, Information & Communication Technology
(RTEICT), pp. 2319–2323 (2018). IEEE.

[2] Wu, B., Iandola, F., Jin, P.H., Kurtzke, K.: Squeezenet: Unified, small,
low power fully convolutional neural networks for real-time object
detection for autonomous driving. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
pp. 129–137 (2017).

[3] Ghielmetti, N., Loncar, V., Pierini, M., Rood, M., Summers, S.,
Aarestad, T., Petersson, C., Linander, H., Ngdinuba, J., Lin, K., et al.:
Real-time semantic segmentation on fpgas for autonomous vehicles
with hls4ml. Machine Learning: Science and Technology 3(4), 045011
(2022).

[4] Hao, C., Chen, Y., Liu, X., Sarwari, A., Sew, D., Dhar, A., Wu, B., Fu,
D., Xiong, J., Hwu, W.-m., et al.: Nais: Neural architecture and
implementation search and its applications in autonomous driving. In:
2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–8 (2019). IEEE.

[5] Valadarzoj, Z., Daryanavard, H., Harifi, A.: High-speed yolov4-tiny
hardware accelerator for self-driving automotive. The Journal of
Supercomputing 80(5), 6699–6724 (2024).

[6] Guo, K., Sui, L., Qiu, J., Yu, J., Wang, J., Yao, S., Han, S., Wang, Y.,
Yang, H.: Angel-eye: A complete design flow for mapping cnn onto

embedded fpga. IEEE transactions on computer-aided design of
integrated circuits and systems 37(1), 35–47 (2017).

[7] Du, L., Du, Y., Li, Y., Su, J., Kuan, Y.-C., Liu, C.-C., Chang, M.-C.F.:
A reconfigurable streaming deep convolutional neural network
accelerator for internet of things. IEEE Transactions on Circuits and

Systems I: Regular Papers 65(1), 198–208 (2017).
[8] Yu, C., Wang, J., Peng, C., Gao, C., Yun, G., Sang, N.: Bisenet:

Bilateral segmentation network for real-time semantic segmentation.
In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 325–341 (2018).

[9] Yang, Z., Yan, L., Yuan, J.: Design and implementation of driverless
perceptual system based on cpu+ fpga. In: 2020 5th International
Conference on Control, Robotics and Cybernetics (CRC), pp. 261–265
(2020). IEEE.

[10] Bi, F., Yang, J.: Target detection system design and fpga
implementation based on yolov2 algorithm. In: 2019 3rd International
Conference on Imaging, Signal Processing and Communication
(ICISPC), pp. 10–14 (2019). IEEE

[11] Ahmad, A., Pasha, M.A., Raza, G.J.: Accelerating tiny yolov3 using
fpga-based hardware/software co-design. In: 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2020). IEEE

[12] Ma, Y., Cao, Y., Vrudhula, S., Seo, J.-s.: Optimizing the convolution
operation to accelerate deep neural networks on fpga. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 26(7),
1354–1367 (2018)

[13] Huang, H., Wu, Y., Yu, M., Shi, X., Qiao, F., Luo, L., Wei, Q., Liu, X.:
Eddsa: an ecoder-decoder semantic segmentation networks accelerator
on opencl-based fpga platform. Sensors 20(14), 3969 (2020)

[14] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for
semantic segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

[15] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous
convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587 (2017)

[16] Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing
network. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2881–2890 (2017)

[17] Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters–
improve semantic segmentation by global convolutional network. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4353–4361 (2017)

[18] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks
for biomedical image segmentation. In: Medical Image Computing and
Computer-assisted intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part
III 18, pp. 234–241 (2015). Springer

[19] Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep
convolutional encoder-decoder architecture for image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence
39(12), 2481–2495 (2017)

[20] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.:
Semantic image segmentation with deep convolutional nets and fully
connected crfs. arXiv preprint arXiv:1412.7062 (2014)

[21] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.:
Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE Transactions on
Pattern Analysis and Machine Intelligence 40(4), 834–848 (2017)

[22] Wu, Z., Shen, C., Hengel, A.v.d.: Real-time semantic image
segmentation via spatial sparsity. arXiv preprint arXiv:1712.00213
(2017)

[23] Chollet, F.: Xception: Deep learning with depthwise separable
convolutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1251–1258 (2017)

[24] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017)

[25] Li, Z., Xu, H., Liu, Z., Luo, L., Wei, Q., Qiao, F.: A 2.17 μw@120fps
ultra-low-power dual-mode cmos image sensor with senputing
architecture. In: 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 92–93 (2022). IEEE

[26] Mori, P., Vemparala, M.-R., Fasfous, N., Mitra, S., Sarkar, S.,
Frickenstein, A., Frickenstein, L., Helms, D., Nagaraja, N.S., Stechele,
W., et al.: Accelerating and pruning cnns for semantic segmentation on
fpga. In: Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 145–150 (2022)

[27] Miyama, M.: Fpga implementation of 3-bit quantized cnn for semantic
segmentation. In: Journal of Physics: Conference Series, vol. 1729, p.
012004 (2021). IOP Publishing

http://www.ijerm.com/

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 46 www.ijerm.com

[28] Suda, N., Chandra, V., Dasika, G., Mohanty, A., Ma, Y., Vrudhula, S.,
Seo, J.-s., Cao, Y.: Throughput-optimized opencl-based fpga
accelerator for large-scale convolutional neural networks. In:
Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 16–25 (2016)

[29] Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P.,
Jahre, M., Vissers, K.: Finn: A framework for fast, scalable binarized
neural network inference. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-programmable Gate Arrays, pp. 65–
74 (2017)

[30] Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P.,
Jahre, M., Vissers, K.: Finn: A framework for fast, scalable binarized
neural network inference. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-programmable Gate Arrays, pp. 65–
74 (2017)

[31] Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation
of convolutional neural networks. arXiv preprint arXiv:1604.03168
(2016)

[32] Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman
coding. arXiv preprint arXiv:1510.00149 (2015)

[33] Ali, N., Philippe, J.-M., Tain, B., Coussy, P.: Generating efficient
fpga-based cnn accelerators from high-level descriptions. Journal of

Signal Processing Systems 94(10), 945–960 (2022)
[34] Venieris, S.I., Bouganis, C.-S.: Fpgaconvnet: Mapping regular and

irregular convolutional neural networks on fpgas. IEEE Transactions

on Neural Networks and Learning Systems 30(2), 326–342 (2018)
[35] Chen, Y.-H., Emer, J., Sze, V.: Eyeriss: A spatial architecture for

energy-efficient dataflow for convolutional neural networks. ACM

SIGARCH Computer Architecture News 44(3), 367–379 (2016)
[36] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally,

W.J.: Eie: Efficient inference engine on compressed deep neural
network. ACM SIGARCH Computer Architecture News 44 (3), 243 -
254 (2016)

[37] Taye, M.M.: Theoretical understanding of convolutional neural
network: Concepts, architectures, applications, future directions.
Computation 11 (3), 52 (2023)

[38] Ding, C., Gu, J., Du, Y., Han, B., He, H., Hu, Y., Liu, L., Wei, S., Yin,
S.: A reconfigurable 2d-mesh noc design with agile development
technique of spinalhdl. In: 2023 International Symposium of
Electronics Design Automation (ISEDA), pp. 142 - 145 (2023). IEEE

[39] Nigade, A., Pawar, S., Banerjee, A., Das, N., Ghosh, S.: Processor
using risc-v isa (2021)

[40] Fu, Y., Wu, E., Sirasao, A.: 8-bit dot-product acceleration. Xilinx Inc.:
San Jose, CA, USA, 20 (2017)

[41] Yu, M., Huang, H., Liu, H., He, S., Qiao, F., Luo, L., Xie, F., Liu, X.-J.,
Yang, H.: Optimizing fpga-based convolutional encoder-decoder
architecture for semantic segmentation. In: 2019 IEEE 9th Annual
International Conference on CYBER Technology in Automation,
Control, and Intelligent Systems (CYBER), pp. 1436 - 1440 (2019).
IEEE

[42] Shimoda, M., Sada, Y., Nakahara, H.: Filter-wise pruning approach to
fpga implementation of fully convolutional network for semantic
segmentation. In: Applied Reconfigurable Computing: 15th
International Symposium, ARC 2019, Darmstadt, Germany, April 9 -
11, 2019, Proceedings 15, pp. 371 - 386 (2019). Springer

[43] Jia, W., Cui, J., Zheng, X., Wu, Q.: Design and implementation of
real-time semantic segmentation network based on fpga. In:
Proceedings of the 2021 7th International Conference on Computing
and Artificial Intelligence, pp. 321 - 325 (2021)

[44] Le Blevec, H., Léonardon, M., Tessier, H., Arzel, M.: Pipelined
architecture for a semantic segmentation neural network on fpga. In:
2023 30th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), pp. 1 - 4 (2023). IEEE

http://www.ijerm.com/

	I. INTRODUCTION
	II. Related Work
	III. The Proposed Method
	A. Network Model Analysis
	B. Hardware Implementation Workflow Overview
	C. The Proposed Hardware Architecture
	D. The proposed Optimization Method

	IV. Experiment
	A. Experimental Setup and Workflow
	B. Datasets
	C. Preprocessing and Hyperparameters
	D. Quantization Accuracy Evaluation
	E. Comparison of Previous Work

	V. Conclusion
	References

