
International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 32 www.ijerm.com

Abstract— This paper describes a methodology for designing a

deep learning accelerator system, incorporating RISC-V and

CNN capabilities within a loosely coupled architecture(LCA),

had been presented to enhance inference performance on edge

devices, achieve lower power consumption, and expedite

response times. First, a microarchitecture had been designed

for cooperative operation between the main processor and the

deep learning accelerator, and efficient neural network

inference had been enabled through a customized instruction

set. Second, flexible configuration and scalability strategies had

been adopted, allowing the accelerator to accommodate various

neural network models and application requirements. Lastly,

widely-used convolutional neural network models such as

ResNet-50, YOLOv4-Tiny, and BiSeNet v1 had been selected

and rapidly deployed on the system. Experiments had been

conducted on the XC7K410T board, demonstrating the synergy

advantages between the accelerator and the RISC-V processor.

Specifically, the system achieved processing speeds up to 871.1

GOP/s and computational efficiencies up to 96.79 GOP/s/W.

Index Terms— accelerator, CNN, LCA, RISC-V

I. INTRODUCTION

 Under the surge of artificial intelligence, machine learning

within edge computing encounters dual challenges: the rapid

evolution of emerging applications underscores the necessity

for generalizability, while local decision-making imposes

increasingly stringent demands on performance and power

consumption. Edge devices necessitate real-time

responsiveness and intelligent decision-making capabilities,

with interaction modes tending to diversify. Convolutional

Neural Network (CNN), as potent machine learning

techniques, have significantly improved the accuracy of tasks

such as image classification [1], object detection [2], and

semantic segmentation [3]. However, this enhanced

performance comes at the expense of increased

computational complexity and resource consumption.

CNN Inference

Engine

CPU

RISC-V ISA

CNN

Accelerate

NAI Instruction

Work

B

U

S

A

D

A

P

T

E

R

NAI Instruction

Send

CNN

Status

NAI Instruction

Generation

Fig. 1.LCA diagram

Hardware acceleration technologies help edge devices

respond in real-time by offloading computational tasks to

Manuscript received March 09, 2025

Yaofeng Hou, School of computer science and technology, Tiangong

University, Tianjin, China.

Kaijian Zeng, School of computer science and technology, Tiangong
University, Tianjin, China.

dedicated neural network accelerators. The RISC-V

Instruction Set Architecture (ISA) [4] is a popular choice for

deploying neural networks at the edge because it is open and

scalable. RISC-V processors and neural network accelerators

can use either Loosely Coupled Architecture (LCA) or

Tightly Coupled Architecture (TCA) [5]. As shown in Fig.1,

LCA is a heterogeneous architecture. The CPU utilizes the

RISC-V instruction set and sends NAI instructions, generated

by the inference engine, to the accelerator for neural network

inference acceleration. Based on the results returned by the

accelerator, the CPU decides on the next steps. LCA is

flexible and scalable. It allows the configuration of the

processor and accelerator to be adapted to the application

scenario. It also makes it easier to integrate new components

and reduces the complexity of system integration. This is a

significant advantage for edge computing applications that

require rapid iteration and continuous optimisation.

The contributions of this paper are as follows:

1) A modular Neural Network Acceleration Instruction

(NAI) set had been introduced, upon which a convolutional

neural network accelerator had been designed.

2) A loosely coupled architecture (LCA), featuring an

RV32IM RISC-V processor alongside an NAI-powered

neural network accelerator, had been proposed to investigate

a neural network heterogeneous computing system with

reduced power consumption and enhanced inference speed.

3) Experimental validation had been carried out on the

XC7K410T board, showcasing the synergistic benefits of the

accelerator operating in conjunction with the RISC-V

processor under the LCA.

Publicly Available Dataset

Video

Input

RISC-V

CPU

C

A

C

H

E

Ins Buffer
Ins

Decoder
Controller

Weight

Buffer

Accelerator

Conv M
U

XA

X

I

B

U

S

D

M

A

DRAM

S

W

I

T

C

H

Operators

BilinearMeanConcat

ADD Activation Split

AvgpoolUpSample Maxpool

M
U

X

FPGA

XC7K410T

Resize

IMG

0

0 127-128

max(|x|)-max(|x|)

Quantized Int8

FP32 DATA INT8 DATA

Conv2D

BatchNorm

ReLU

Conv2D & BN &

ReLU

Layer Fusion

Quantization

Lightweight Methods Create Weight Create Instruction

• Weight

• Shirt_Para

• Scala_Para

• Bias_Para

• Address

• Feature Size

• Operation_Para

• Layer Fysion

• Quantization

Training

AXI-LITE

AXI-FULL

Instruction Bus Data Flow Bus Ctrl " " "

ROM

Fig. 2. System Structure Diagram

Loosely Coupled Architecture in Flexible RISC-V CPU

and Configurable CNN Accelerator

Yaofeng Hou, Kaijian Zeng

http://www.ijerm.com/

Loosely Coupled Architecture in Flexible RISC-V CPU and Configurable CNN Accelerator

 33 www.ijerm.com

II. RELATED WORK

Deployment of neural network models has advanced

FPGA-based deep learning accelerators. Zhang et al. [6] used

pipelined designs on the ZYNQ-7020 to deploy the

YOLOv4-Tiny neural network via HLS, speeding up

inference times. Guo et al [7] developed a

DeepLabv3+ResNet18 accelerator on a Xilinx Virtex-7

XC7VX690T board with outstanding performance and

accuracy. These works show that FPGA is great for

accelerating CNN inference on edge devices. However, most

research has focused on performance enhancements, ignoring

generality and scalability. Heterogeneous computing

architectures, which integrate processors with RISC-V

instruction sets and accelerators featuring custom instruction

sets, have demonstrated impressive performance in

accelerating inference tasks and model reconfigurations.

Mani V.R.S. [8] employed ZYNQ boards with ARM

hardware cores to meet the application requirements for

processor-controlled systems and data routing. However, the

proprietary nature of ARM cores limited the system's

flexibility. RISC-V has gained attention for its openness and

modular instruction set that can be adapted to various

application scenarios. By deploying RISC-V as a soft core on

FPGA boards, new opportunities for general-purpose deep

learning accelerators have emerged. Wu et al. [9] integrated

the accelerator as a co-processor onto the RISC-V CPU core,

achieving high acceleration ratios for convolutional

computations through extended instruction sets. However,

tightly coupled architectures are highly dependent on specific

models, which can lead to significant decreases in accelerator

efficiency when handling different models or algorithms. To

accommodate new functional requirements, extensive

reconfigurations of both the CPU and accelerator are often

necessary. Alejandra Sanchez-Flores [5] offered

comprehensive insights into LCA and TCA, supported by

empirical data showcasing favorable power consumption and

throughput for LCA centered on RISC-V processors.

III. SYSTEM STRUCTURE

A. System Structure Description

The independence of the LCA facilitates a more flexible and

efficient implementation on both the software and hardware

sides. This decoupling of software and hardware components

also enhances their ability to collaborate effectively. In this

architecture, the RISC-V processor serves as the main control

unit, managing low-complexity computations and

coordinating communication between system components.

Meanwhile, the CNN accelerator focuses on efficiently

executing deep neural network computations. To improve

inference speed, parallel processing and pipeline

optimization techniques are utilized. Given the high

computational demands of CNN, the accelerator operates at a

higher frequency to expedite inference, while the RISC-V

processor operates at a lower frequency to manage the

control flow. This dual-frequency approach enhances the

overall performance and maintainability of the system. The

system architecture of the LCA, featuring RISC-V CPUs and

deep learning accelerators, is illustrated in Fig.2. The entire

inference process of the neural network is controlled by a

combination of RISC-V instructions for process control and

NAI for computational tasks.

The RISC-V processor retrieves instructions and parameters

from ROM, transfers weight data to DRAM via the AXI bus,

and sends convolutional layer operation commands to the

accelerator through the AXI-Lite bus. These commands are

stored in the accelerator's instruction cache. Upon receiving a

start or completion signal from the previous layer, the

instruction cache releases the current layer's instructions to

the decoder. The decoder then configures the compute kernel,

memory accesses, and cache control accordingly.Under the

guidance of the controller, the DMA extracts necessary

parameters and image data from the DRAM and sends them

to the computational unit of the accelerator to perform the

convolution operation. Once completed, the output data can

be directed to subsequent processing stages, such as pooling

and activation, minimizing unnecessary data write-backs to

the DRAM. This approach dramatically reduces data transfer

latency and energy consumption, improving overall inference

efficiency.To minimize resource utilization, we adopted a

lightweight algorithm design approach focused on reducing

computational load, parameter count, and actual runtime.

Specifically, we employed weight quantization and operator

fusion. Weight quantization reduced the model's parameter

count while maintaining accuracy, thereby enhancing

computational efficiency. Batch normalization (BN) fusion

addressed the vanishing gradient problem by enabling a

single computation to complete the Conv+BN+ReLU layers

in hardware. This also reduced power consumption on

DRAM, positively impacting the system's energy efficiency

ratio.

B. CNN Inference Engine

Different neural network models typically have distinct

compositions, as illustrated in Table 1. For example,

ResNet-50, YOLOv4-Tiny, and BiSeNet v1 exhibit

substantial differences in operator composition. Even when

operators are shared, their computational parameters can

vary. To accommodate the support of various neural network

models, a CNN inference engine was proposed. This engine

generates data and instructions corresponding to the

microarchitecture based on the computational graph.Under

the LCA, all computational tasks are offloaded to the

accelerator, leaving the CPU solely for control purposes.

Table 1 Network model information

As shown in Fig.3(a), the inference engine has two phases:

translation and optimization. The translation phase extracts

 ResNet-50 YOLOv4-Tiny BiSeNet v1

CONV √ √ √

MaxPooling √ √ √

AvgPooling √ - √

Concat √ √ √

Upsample - √ √

LeakyRelu - √ √

Sigmoid - √ √

Mul - - √

ADD √ √ √

Split - - √

Input Size 224x224 416x416 640x640

Conv layer 49 21 34

Operations 8.9 6.8 127.7

Kernel Size 3 × 3, 7 × 7 1 × 1, 3 × 3 1 × 1, 3 × 3

Accuracy(FP32) Top-1 75.08% Iou≥ 0.7 56.92% mIoU 68.24%

Accuracy(INT8) Top-1 74.56% Iou≥ 0.7 56.58% mIoU 67.82%

http://www.ijerm.com/

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-12, Issue-03, March 2025

 34 www.ijerm.com

necessary information from the model, performs operator

fusion on closely related layers in the CNN to reduce

computation, and quantizes the kernel weights with

negligible loss of accuracy. The generated quantized data is

then organized into an intermediate representation (IR). The

processed weights are reordered according to the results of

the network slicing and optimization phases.The

optimization phase parses the translated IR to maximize

throughput by slicing the network. Finally, the optimized

demapping generates Neural Network Acceleration

Instruction (NAI).

（a）

Translation

CNN

Trained Data

CNN Model

Quantization

Operation

fusion
IR

Data

management

Optimization

Optimization

Parsing Slicing

Memory

Allocation

Instruction

Sequence

0

W/R Addr Offset Parameter
3132616263

NAI

Operators DMAState

Decode

NAI

Controller

（b）
Fig.3. Engine and instruction flow

C. NAI Instruction

NAI was defined in this study as a specialized 64-bit

instruction set architecture. The [63,32] bit range of this

architecture was designated as the Opcode, which determined

the instruction type through recognition. As depicted in

Fig.3(b), the Opcode consisted of read/write operations and

address information, with the Decode module tasked with

resolving the corresponding read/write addresses based on

the Opcode. Subsequently, the module transferred the [31,0]

bit parameters of NAI to the Controller. NAI was subdivided

into three primary categories based on its function and

purpose: Parameter Type (P-Type), Control Type (C-Type),

and Load/Store Type (L-Type) instructions. The number of

bits occupied by each instruction type and the details of their

information were detailed in Fig.4.

P-Type is the type of core instruction required to configure a

specific computational task within the accelerator and is used

to convey basic configuration information. This includes key

configuration information such as image size, step size,

input/output channels, bias, scale, and weight count. By

controlling these parameters, flexible support can be

provided for various hierarchical structures of the CNN.

C-Type is an tool for coordinating operations within the

accelerator and controlling the flow of instructions.The

C-Type instructions include functions such as initiating

specific operator operations, synchronizing the accelerator

state, and reading the accelerator state to determine if a

computation is complete.

L-Type instructions specify read and write operations on the

data, ensuring that the accelerator 's processing units are able

to fetch the input data and store the results of the computation

correctly. L-Type allows the accelerator to precisely control

the data flow and support complex memory access patterns,

which are particularly important for efficient weight and

feature map storage, optimized memory access modes, and

reduced memory latency.

079101719202131

Parameter

En_Focus

En_Stride

Padding_Num

Conv_Type

Operators_StateOperators_Control

Conv_Control Conv_State

DMA_Write_Length

DMA_Read_Addr_0

DMA_Write_Addr

Quan_ZP

Zero_1

Quan_Scale

Reserved Conv_ZeroPadding_Zero

Row_InCol_InChannel_In_0

C-Type

L-Type

P-Type

Channel_OutChannel_In_1Reserved

WeightNumQuan_Num

Scale_1Scale_0

Zero_0

DMA_Read_Length_0

DMA_Read_Addr_1

DMA_Read_Length_1

15

N = 7

N = 5

N = 5

P-Type

P-Type

P-Type

P-Type

L-Type

L-Type

C-Type

P-Type

P-Type

P-Type

L-Type

C-Type

P-Type

P-Type

P-Type

L-Type

C-Type

……

Fig. 4. Instruction unit detail

NAI incorporated an event-based triggering mechanism. As

illustrated in Fig.4, under this mechanism, the execution of

P-Type and L-Type instructions did not occur immediately

but remained in a standby state until triggered by a C-Type

instruction to commence their designated operations. This

design permitted multiple P-Type and L-Type instructions to

be grouped together and simultaneously updated by a single

C-Type instruction, forming a comprehensive parameter

configuration table. This design avoids the complexity of

conditional judgment and execution for each instruction,

improving the efficiency of the instruction pipeline and the

overall execution speed.

X

W

H

C

K

TC

TFK

F

F

TF

W

H

1

1

Input Feature Output Feature

‘
Fig.5. Data access pattern

D. Accelerate Structure

The inference-computation intensive nature of CNN requires

efficient parallel computing capabilities. This design

employs a multi-level parallelization strategy. This involves

loop unfolding of kernel row and column iterations, input

feature map channel iterations and output feature map

channel iterations to achieve efficient parallel processing. As

depicted in Fig.5, W, H, C, F and K represented the width,

height, number of input channels, number of output channels,

and size of the convolution kernel. Meanwhile, TC and TF

represented the number of input and output channels used in

the computation.The size of the input sliding block was

K×K×TC,the weight block was K×K×TC×TF, and the output

sliding block was K×K×TF.Within each clock cycle, the

accelerator read the input sliding block and weight block

sequentially to perform convolution operations. Following

C/TC clock cycles, an output sliding block was calculated.

Subsequently, this output sliding block was written back to

off-chip memory or passed on to subsequent operator

operations.

IV. EXPERIMENTAL RESULT

In order to verify the effectiveness of using LCA, we decided

to experimentally validate three CNNs (Resnet-50,

YOLOv4-Tiny and BiSeNet v1) on the XC7K410T board

shown in Fig.6. Measured by actual RTL code experiments,

Table 2 displayed a performance comparison between our

design and existing FPGA-based accelerators. For all

evaluated networks, LCA outperformed all others in terms of

energy efficiency (GOP/s/W). We achieved an energy

efficiency of 82.92 to 96.79 GOP/s/W. The works proposed

in [6] and [10] utilized 16-bit quantization for computation,

http://www.ijerm.com/

Loosely Coupled Architecture in Flexible RISC-V CPU and Configurable CNN Accelerator

 35 www.ijerm.com

resulting in less efficient DSP utilization and lower energy

efficiency compared to ours. The implementation of the

YOLOv3-Tiny network on a RISC-V processor, as proposed

in [10], resulted in power consumption of 3.87W.However,

due to their low operating frequencies, their throughput was

approximately one-fifth of ours, resulting in energy

efficiency being roughly half of what we achieved. Although

the designs proposed in [11] and [12] had slightly higher

throughput than ours, their power consumption was three

times greater, leading to inferior energy efficiency compared

to our design.

V. CONCLUSION

This paper explores a neural network heterogeneous

computing system with lower power consumption and higher

inference speeds on a LCA consisting of an RISC-V

processor and a NAI neural network accelerator. For the

requirement of deploying new neural network models,

designs and optimizations were carried out separately on the

processor and accelerator through decoupling. Experiments

conducted on various neural network models demonstrated

that our system, on the strength of its strong generality,

exhibited superior performance.

Fig.6. Evaluation board for LCA

VI. REFERENCES

[1] Bharadiya, J. "Convolutional neural networks for image

classification." International Journal of Innovative

Science and Research Technology 8.5 (2023): 673-677.

[2] Zhao H, Morgenroth J, Pearse G, et al. A systematic review

of individual tree crown detection and delineation with

convolutional neural networks (CNN)[J]. Current

Forestry Reports, 2023, 9(3): 149-170.

[3] Nasreen, Ghazala, et al. "A comparative study of

state-of-the-art skin image segmentation techniques with

CNN." Multimedia Tools and Applications 82.7 (2023):

10921-10942.

[4] Cham, Switzerland, RISC-V Specification, vol. 1,

Unprivileged Spec V, 2019.

[5] A. Sanchez-Flores, L. Alvarez and B. Alorda-Ladaria,

"Accelerators in Embedded Systems for Machine

Learning: A RISCV View," 2023 38th Conference on

Design of Circuits and Integrated Systems (DCIS),

Málaga, Spain, 2023.

[6] Zhang F, Li Y, Ye Z. Apply yolov4-tiny on an fpga-based

accelerator of convolutional neural network for object

detection[C]//Journal of Physics: Conference Series. IOP

Publishing, 2022, 2303(1): 012032.

[7] Guo Z, Liu K, Liu W, et al. An Overlay Accelerator of

DeepLab CNN for Spacecraft Image Segmentation on

FPGA[J]. Remote Sensing, 2024, 16(5): 894.

[8] Mani V.R.S, Saravanaselvan A, Arumugam N.

Performance comparison of CNN, QNN and BNN deep

neural networks for real-time object detection using

ZYNQ FPGA node[J]. Microelectronics Journal, 2022,

119: 105319.

[9] Wu N, Jiang T, et al. A reconfigurable convolutional neural

network-accelerated coprocessor based on RISC-V

instruction set[J]. Electronics, 2020, 9(6): 1005.

[10] Pestana D, Miranda P R, Lopes J D, et al. A full featured

configurable accelerator for object detection with

YOLO[J]. IEEE Access, 2021, 9: 75864-75877.

[11] Liu S, Fan H, Ferianc M, et al. Toward full-stack

acceleration of deep convolutional neural networks on

FPGAs[J]. IEEE Transactions on Neural Networks and

Learning Systems, 2021, 33(8): 3974-3987.

[12] Nguyen D T, Je H, Nguyen T N, et al. ShortcutFusion:

From tensorflow to FPGA-based accelerator with a

reuse-aware memory allocation for shortcut data[J]. IEEE

Transactions on Circuits and Systems I: Regular Papers,

2022, 69(6): 2477-2489.

http://www.ijerm.com/

	I. INTRODUCTION
	II. Related Work
	III. SYSTEM STRUCTURE
	IV. EXPERIMENTAL RESULT
	V. Conclusion
	VI. References

