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Abstract—Co-speech gesture generation, a subset of 3D motion 

generation, aims to generate appropriate motion sequences 

from audio or other conditions. While many existing methods 

focus on the rhythm between motion and audio, they often 

neglect the semantics of gestures. Furthermore, approaches 

based on diffusion models or Transformer require significant 

time for training and inference, making them unsuitable for 

real-time applications. In this paper, we proposed CASG, a 

network based on the conditional autoregressive model, which 

effectively enhances the semantics of generated gestures 

through a semantic enhancement module inspired by VQ-VAE. 

Additionally, the loss function is improved for 3D rotational 

and translational transformations of motion sequences, 

addressing the instability issue in generated models. Extensive 

experiments demonstrate that our model outperforms 

competing methods in terms of semantics, rhythm and 

stability. 

 
Index Terms—gesture genaration, semantics, VQ-VAE, 

autoregressive model.  

 

I. INTRODUCTION 

  3D motion generation involves creating action 

sequences in three-dimensional space using computer 

algorithms and technologies. This process typically 

encompasses capturing, simulating, editing, and rendering 

action data to achieve realistic dynamic performance in 

various media such as movies, animations, video games, and 

virtual reality (VR). 

Co-speech gesture generation, a specific branch of 3D 

motion generation, focuses on generating adaptive motion 

from a segment of audio. Early approaches relied on 

rule-based methods, utilizing predefined correspondences 

between human conversations, speech, and other states. 

However, these methods have limitations in terms of rule 

complexity, predefined action size, and the need for 

extensive manual work. 

Co-speech gesture generation, a specific branch of 3D 

motion generation, focuses on generating adaptive motion 

from a segment of audio. Early approaches relied on 

rule-based methods, utilizing predefined correspondences 

between human conversations, speech, and other states. 

However, these methods have limitations in terms of rule 

complexity, predefined action size, and the need for 

extensive manual work.  

In recent years, data-driven gesture generation methods 

have gained prominence. These methods require less manual 
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effort and offer greater flexibility by dynamically generating 

new gestures and being easily scalable to large datasets. 

Deep learning techniques, including recurrent neural 

networks (RNN), long short-term memory networks 

(LSTM), generative adversarial networks (GAN), and 

diffusion models, have been extensively used for gesture 

generation from speech. CaMN [1] designed a cascade 

structure to drive the generation of poses based on facial, 

body, audio, text transcript and speaker id. ZeroEGGS [2] 

adds stylization to the dataset, and uses the variational 

framework to learn gesture embedding, so that gesture can 

be modified through potential spatial operations or mixing 

and scaling of style embedding. DiffuseStyleGesture [3] 

introduces cross local attention and self-attention into the 

diffusion model to generate better audio-matching and real 

gestures. However, simply using text as input can not deeply 

understand the semantic information. Therefore, some 

methods adopt specific structures to better learn the 

semantic information of audio, so as to achieve the gesture 

expression effect with more semantic information. 

LivelySpeaker [4] uses the text as a semantic description 

based on the diffusion model. The motion sequence is 

divided into fixed segments, and an encoder-decoder 

structure is input to calculate the reconstruction loss, while 

the loss calculation is compared with the text vector. 

GestureDiffuCLIP [5] introduces the CLIP structure into the 

diffusion model to learn the mapping relationship between 

text and motion sequences in the latent space, so that the 

generated gestures can realize the semantic information. 

Many existing methods primarily utilize single audio 

inputs, potentially neglecting the semantic information 

present in the audio. Some approaches incorporate text 

transcriptions as part of the input, while others employ 

specific structures to better learn speech semantics, resulting 

in gesture expressions with richer semantic information. 

However, these methods often suffer from slow training and 

inference times, limiting their applicability in real-time 

scenarios. To address these limitations, we propose a 

semantic-enhanced co-speech gesture generation method. 

Our approach utilizes a semantic enhancement module SEM 

based on VQ-VAE to establish a mapping relationship 

between text vectors extracted by CLIP and vectors in the 

VQ-VAE latent space, thereby enhancing the model’s 
semantic understanding. An improved structure optimizes 

the extraction and fusion of multimodal information, 

ensuring both semantic richness and efficient reasoning. 

Additionally, we optimize the loss function to improve the 

stability of the generated gestures. 

In summary, our contributions are as follows:  

1) We propose a semantic enhancement module SEM, 

which establishes a semantic mapping relationship between 
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action sequences and text transcripts, enhancing the 

understanding of semantic information. 

2) We propose CASG, a fast pose generation model, 

which can more accurately extract and fuse multimodal 

information. Moreover, we enhance the loss function for the 

rotation and translation of motion capture data, which aids 

in generating more diverse, natural, and stable high-quality 

gestures. 

3) Experiments conducted on the BEAT dataset have 

shown that our model outperforms competing methods in 

terms of semantic representation, naturalness, and stability. 

These results underscore the effectiveness of our approach 

in generating realistic and meaningful co-speech gestures. 

II. RELATED WORK 

Human motion synthesis. Human motion synthesis has a 

rich history, while human motion prediction being one of 

the most captivating fields. This domain aims to predict 

future motion based on past motion sequences. Existing 

methods incorporate spatial and temporal information to 

generate future motion sequences. Deep neural networks, 

with their formidable modeling capabilities, have been 

extensively employed in gesture generation. Traditional 

models, such as MLP, RNN and Transformer, have been 

utilized alongside generative models like VAE, diffusion 

models, or flow-based models. Co-speech generation is a 

sub-task within human motion generation, focusing on 

generating 3D human motion in response to various 

conditions. MotionCLIP [6]  leverages aligned text and 

motion embeddings, with a CLIP   text encoder, and 

rendered images providing additional supervision. For basic 

motion generation, various methods have been proposed, 

including predefined motion classes as in GesGPT [7], or 

additional text encoders as in FreeTalker  [8], and temporal 

motion combinations derived from a series of natural 

actions. However, these methods typically concentrate 

solely on rhythm. In contrast, our approach considers both 

the semantics and rhythm of gesture generation within a 

unified framework. 

VQ-VAE. Vector Quantized-Variational Auto-encoder 

[9], is a generative model that combines the concepts of 

Variational Autoencoders (VAE) and vector quantization. 

Initially developed for image generation tasks, it features an 

autoencoder architecture designed to learn and reconstruct 

data using discrete representations. VQ-VAE begins by 

constructing a codebook, essentially an embedding space of 

features. The encoder processes the input image to extract 

its feature map. Each feature vector then finds the closest 

vector in the codebook, using the index to retrieve the 

closest vector and create a quantized feature map. This 

quantized map is passed to the decoder, which reconstructs 

the original image. Compared to VAE that sample and 

generate from a Gaussian distribution, VQ-VAE utilizes a 

limited codebook, making it easier for the decoder to handle 

the feature distribution in the hidden state while also 

constraining the variance. Sampling from a codebook is 

simpler than completely free sampling, making it more 

efficient for generating samples. 

Due to its strong capabilities in data representation, 

generation and compression, VQ-VAE has been applied to 

various modalities beyond images. These include audio 

generation, style transfer, text motion generation, and 

co-speech gesture generation. For instance, T2M-GPT [10]  

employs a generation framework based on VQ-VAE and 

GPT, learning to generate human motion from high-quality 

discrete representations and enhancing the consistency 

between text and generated motion. MotionGPT [11] treats 

motion as a language, leveraging large-scale motion models 

and integrating language data to train a motion-related 

codebook. This codebook uses discrete quantization for 

human motion and converts 3D motion into motion tokens, 

allowing for a unified approach to modeling motion and text 

in language and learning their correlation. Another example 

is TM2D [12], which generates 3D motion from music and 

text. It proposes a cross-model transformer and a bimodal 

feature fusion strategy to encode audio and text features, 

utilizing the VQ-VAE framework to encode the motion of 

all training sets into a shared feature space. 

III. METHOD 

Our method consists of two main steps, aimed at 

enhancing the semantic expression of gesture generation. 

First, we train the semantic enhancement module SEM. This 

step involves training a semantic learning module based on 

VQ-VAE. The original action training data is encoded into a 

latent space. We then access the frozen CLIP [13] text 

encoder to obtain the vector representation of the transcript 

and calculate the cosine similarity loss between the vectors 

in the CLIP latent space 𝑧𝐶𝐿𝐼𝑃 and the action vectors in the 

VQ-VAE latent space 𝑧𝑒𝑚𝑏 . By learning to reconstruct the 

original action sequence from this potential space, we 

establish a semantic mapping relationship between the 

actions and the transcripts. Second, we train the co-speech 

gesture generate network. We extract features from both the 

audio and gesture data, concatenate them, and input them 

into the gesture generator. The audio features are divided 

into low-level and high-level components. The low-level 

part focuses on capturing audio rhythm, tempo, and other 

rhythmic information, represented by the Mel spectrogram 

extracted using librosa. The high-level part aims to extract 

deeper semantic information from the audio, utilizing a 

pre-trained WavLM [14] structure. During gesture 

generation, we leverage the VQ decoder trained in the first 

step to promote the semantic relevance and stability of the 

generated actions. 

Semantic Enhancement Module. Considering the 

powerful role of VQ-VAE in image generation tasks, this 

paper utilizes a semantic enhancement module SEM based 

on the VQ-VAE structure. The module encodes the motion 

sequence into the latent space, learns to reconstruct the 

original motion sequence from a set of discrete 

representations, and calculates the cosine similarity with the 

frozen CLIP text encoder to establish the mapping 

relationship between the codebook and the text transcript. 

As shown in Fig.1(a), the encoder and decoder of the 

semantic enhancement module are implemented as GRU 

structures. The encoder encodes the motion sequence into 

the latent space, while the decoder reconstructs the original 

motion sequence from a set of discrete codes. The codebook 

serves as an embedding layer, clustered into a predefined 

codebook size. This process discretizes the continuous 

vector  
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into a predefined number of latent vectors 𝑧𝑒𝑚𝑏. During the 

decoding phase, the quantized vector 𝑧𝑒𝑚𝑏is reconstructed 

into an action sequence through the GRU structure. The loss 

function for the reconstruction part is defined as follows: 

 𝐿𝑉𝑄 = log p(𝑥|𝑧𝑞(𝑥)) + ||𝑠𝑔[𝑧𝑒(𝑥)] − 𝑒||22 +                  𝛽||𝑧𝑒(𝑥) − 𝑠𝑔[𝑒]||22                       (1) 

 
The first term in the loss function is solely used for 

training the encoder and decoder, with identical gradients, 

and represents the reconstruction loss. The second term is 

dedicated to training the codebook to be closer to the 

embeddings 𝑍𝑒 . The third term trains the encoder while 

fixing the codebook gradient to ensure the encoder’s output 

stability. Here, 𝑠𝑔[·] denotes the gradient stop operation, x 

represents the input, 𝑧𝑒(𝑥) denotes the encoder vector of 

input x, and 𝑧𝑞(𝑥) represents the generated quantization 

vector, which serves as the input to the decoder. 

Simultaneously, we employ cosine similarity loss 𝐿𝑐𝑜𝑠  during training to compute the cosine similarity 

between the CLIP semantic embedding 𝑧𝐶𝐿𝐼𝑃 and the latent 

space embedding 𝑧𝑒𝑚𝑏 ,  establishing the semantic 

relationship between text transcript and gestures: 

               𝐿𝑠𝑒𝑚 =  𝐿𝑐𝑜𝑠(𝑧𝐶𝐿𝐼𝑃  , 𝑧𝑒𝑚𝑏)           (2) 
 

The complete training objectives of semantic 

enhancement  

module are:  

    

             𝐿𝑓𝑢𝑙𝑙 = 𝐿𝑉𝑄 + 𝐿𝑠𝑒𝑚                    (3) 
Dual Audio Encoder. The audio encoder is divided into 

two parts, focusing on extracting both low-level and 

high-level audio information. The low-level audio encoder 

utilizes librosa to extract the Mel spectrogram from the 

original audio  

data. Mel spectrograms offer an improved representation of 

frequency domain signals compared to traditional 

spectrograms. They employ a Mel frequency scale instead of 

a linear scale, making them more sensitive to low 

frequencies and aligning more closely with human auditory 

perception. Consequently, Mel spectrograms are widely 

used for audio information extraction. After obtaining the 

Mel spectrograms, the encoder employs a series of 1D 

convolutional layers, activation functions, and frame-wise 

linear layers to obtain the embedded vector sequence 

representing the low-dimensional audio information. 

To extract high-level audio features, a pre-trained 

WavLM structure is employed. Upon inputting the original 

audio data, the high-level audio encoder first processes it 

through a structure consisting of multiple convolutional 

layers. Subsequently, the features extracted from these 

convolutional layers are passed into a time context module 

based on the Transformer architecture to capture 

higher-level voice information. The WavLM model 

transforms the original audio into a series of discrete tokens, 

which encapsulate rich high-level semantic information. 

Gesture Encoder. The gesture encoder transforms the 

input motion capture data into a fixed-length embedded 

vector. The features extracted include the character’s 
position, rotation, and speed relative to the local body 

Fig. 1: Overview of the architecture. Our method is divided into two steps. First, as shown in (a), we train a semantic 
enhancement module based on VQ-VAE. This module learns to produce a semantically relevant VQ decoder by 
optimizing the loss function through the cosine similarity between the vectors in the latent space and the text vectors 
extracted by CLIP. The second step, as shown in (b), involves training a co-speech gesture generation network using a 
conditional autoregressive model, where the audio is segmented into two channels, each channel concentrating on 
different aspects of the audio: rhythm and semantics. When generating motion, the network utilizes the VQ decoder 
trained in the first stage, allowing the model’s final prediction results to more effectively convey the semantics. 
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transformation. All trajectories and body joint 

transformations are calculated relative to the root 

trajectory’s transformation. To facilitate training, the 

original joint rotation is converted into a 2-axis rotation 

matrix representation, with the dimension changed to 6 * j, 

where j is the number of joints. Unlike quaternion or Euler 

angle representations, the rotation matrix uses relative 

forward and upward vectors to represent joint rotation, 

which is continuous, thereby avoiding quaternion 

interpolation issues during neural network training. 

Additionally, the normalization of these features further aids 

in neural network training. These features are calculated 

from the original Euler angles of the dynamic capture data. 

During reasoning, the output is converted back into Euler 

angles to restore the final motion. The joint and root rotation 

velocity are specified using the scale angle axis reference 

from [15]. Thus, each frame is composed of an vector 𝑎 =[𝜌𝑝, 𝜌𝑟 , 𝜈𝑝, 𝜈𝑟 , 𝜖𝑝, 𝜖𝑟], where 𝜌𝑝 and 𝜌𝑟 are the translation 

and rotation positions of the joint, 𝜈𝑝  and 𝜈𝑟 are the 

velocity of the local translation and rotation of the joint, 

and 𝜖𝑝 and 𝜖𝑝are the velocity of the root translation and 

rotation. 

 

 

As shown in Fig.2(a), the obtained feature sequence is 

input into a 1D convolutional layer, an activation function, 

and a normalization layer to obtain the feature embedding 

vector. This vector is then connected to a multi-head 

self-attention layer, with residual connections and 

normalization applied after each layer. 

Gesture Generator. As illustrated in Fig.2(b), the gesture 

generator is a conditional autoregressive model comprising 

two layers of GRU. This model integrates audio embedding, 

gesture embedding, and the previous frames gesture 

prediction to predict the gestures for the new frame. The 

output of this circular decoder is the translation and rotation 

of joints with their velocity, as well as the translation and 

rotation of the root. Consequently, the final output sequence 

is 𝑝𝑟𝑒𝑑 = [𝜌𝑝, 𝜌𝑟 , 𝜈𝑝, 𝜈𝑟 , 𝜊𝑝, 𝜊𝑟 , 𝜖𝑝, 𝜖𝑟], where 𝜌𝑝, 𝜌𝑟 , 𝜈𝑝, 𝜈𝑟  

represent the translation and rotation of joints and their 

velocity, 𝜖𝑝, 𝜖𝑟 represent the translational and rotational 

velocity of the root, and 𝜊𝑝, 𝜊𝑟 denote the position and 

orientation of the root, which helps stabilize the output 

position of the model. 

When calculating the gesture for each frame, the GRU 

output is initially denormalized. The predicted root 

translation and rotation velocity are utilized for root 

transformation, which is then combined with the previously 

generated pose. After normalization, the GRU is then input, 

followed by accessing the trained VQ decoder to enhance 

the semantic relevance of the generated data. 

Loss Function. The loss function consists of two 

components: the reconstruction loss for pose generation and 

the Kullback-Leibler (KL) divergence loss between the 

predicted distribution of the gesture encoder q(z |e) and the 

multivariate Gaussian distribution p(z) before prediction. 

The overall loss is: 

            𝐿 =  𝐿𝑟𝑒𝑐 + 𝐷𝐾𝐿(𝑞(𝒛 |𝒆)||𝑝(𝒛))           (4) 

 

The reconstruction loss consists of the following 

components: 

 𝐿𝑟𝑒𝑐 = 𝜆𝑝𝐿𝑝 + 𝜆𝑟𝐿𝑟 + 𝜆𝑣𝑝𝐿𝑣𝑝 +                              𝜆𝑣𝑟𝐿𝑣𝑟 + 𝐿𝑑𝑝 + 𝜆𝑑𝑟𝐿𝑑𝑟              (5) 

 

The first four items are the mean square error loss (MSE) 

of joint position, rotation, translational velocity, and 

rotational velocity between the ground truth and the predict, 

and the last two items are the mean error loss (MAE) of 

acceleration of the rotation between the ground truth and the 

predict. 

   

IV. EXPERIMENTS 

Datasets. In this paper, we evaluate the proposed method 

using the largest high-quality speech-gesture dataset BEAT. 

BEAT was constructed using a commercial motion capture 

system with 16 cameras recording the conversation and 

self-talk processes. Gestures are categorized into four types, 

and emotions are divided into seven categories. The dataset 

is primarily in English but also includes four other 

languages, with 30 speakers from ten countries contributing 

to the dataset. This includes facial expressions and body 

movements. The dataset contains approximately 76 hours of 

motion capture and speech on various topics. 

Data preparation. The audio file is 16000hz. We use a 

20 ms window size to extract speech features, thus 

generating 30 fps of data. We down-sample the motion 

capture data from 60 fps to 30 fps to match the speech 

features. We normalize all speech and joint positions by 

mean and variance. For transcript text, we extract them 

through the open-source ASR model. We trained all models 

at 30 fps. 

Baselines. Our method is compared with the following 

Fig.2: Architectures of the Gesture Encoder and the Gesture 

Generator. 
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methods: ZeroEGGS and CaMN. They are two 

representative approaches for co-speech gesture generation. 

CaMN integrates multimodal information such as audio, 

text, facial expression, and speaker ID in a cascade 

structure, leading to a more comprehensive generation 

effect. ZeroEGGS focuses more on the processing of 

generating actions and rhythm adaptation. 

DiffuseStyleGesture, based on the diffusion model, achieves 

high-quality generation. 

Training. The whole training process is divided into two 

steps. First, we use the Adam optimizer to train the 

VQ-VAE model with 400 epochs. In the second step, we use 

the Adam optimizer to generate 160000 epochs of the model 

in the batch size 256, with a learning rate of 1e-5 and a 

learning rate decay of 0.995.  

Users study. For generative tasks, given the absence of 

definitive criteria, human subjective evaluation is the most 

critical method of assessment. Consequently, human 

subjective assessment is the primary method used to 

evaluate our approach. We recruited 20 volunteers who were 

tasked with grading the slices based on the following four 

criteria: (1) naturalness, (2) rhythm, (3) diversity, and (4) 

semantics. Each video is cut into 15-20s clips. Each criterion 

was scored on a scale of 1 to 10, with 1 being the lowest and 

10 being the highest rating, indicating the worst to the best 

performance, respectively. As shown in Table.I, our model 

achieves the best scores in semantics, naturalness and 

rhythm. 

 

Table.I: Users study on BEAT. Our CASG performs best in 

the term of semantics, naturalness and stability. 

 
 

Quantitative Evaluation. FGD [16] and BeatAlign [17] 

are utilized as quantitative evaluation metrics. FGD is an 

indicator that quantifies the discrepancy between the 

generated pose and a reference pose. We have developed a 

specialized network for FGD, utilizing a pre-trained 

LSTM-based autoencoder to extract features that can 

capture the dynamic changes inherent in time series data. 

Additionally, BeatAlign is employed to assess the 

synchronization between the generated gesture and the audio 

beat. This synchronization is evaluated by calculating the 

temporal alignment between the generated gesture and the 

audio beat. As shown in Table.II, our model still achieves 

the best performance. 

 

V. CONCLUSION 

In this article, we introduce CASG, a method designed to 

enhance the semantic expression capabilities of co-speech 

gesture generation. We propose a semantic enhancement 

module (SEM) that can fast generate gestures with both 

semantic and rhythmic qualities. The refined loss function 

ensures the stability of the generated poses. Experiments 

demonstrate that our model achieves competitive results in 

terms of semantics, diversity, and stability. 

Large Language Model (LLM) have emerged in the field 

of natural language processing in recent years, which 

exhibits strong deep language understanding and 

generalization abilities, significantly improving the 

performance of various downstream tasks. In future work, 

we plan to leverage LLMs' powerful semantic 

comprehension to further enhance the effectiveness of 

co-speech gesture generation. 
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