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Abstract— To address the multiple challenges in existing remote 

sensing images detection methods, including insufficient 

localization accuracy, imprecise category recognition, and high 

false positive and false negative rates, this paper proposes 

RS-YOLOv11 (Remote Sensing-YOLOv11), an improved 

object detection algorithm specifically designed for remote 

sensing applications based on the YOLOv11 framework.This 

study introduces the fine-grained SPD-Conv module to optimize 

backbone network downsampling, effectively preserving 

feature information and enhancing small object detection. The 

detection head employs Dynamic Head architecture with 

integrated multi-dimensional attention mechanisms, 

significantly improving model performance.To reduce network 

complexity, Faster_Block replaces the Bottleneck design, 

decreasing C3K2 module computational cost and addressing 

YOLOv11 deployment challenges. This improvement achieves 

lightweight design while maintaining performance and 

balancing Dynamic Head overhead. Additionally, WIoU loss 

function replaces CIoU to suppress gradient issues from 

low-quality images.Experiments on the VisDrone2021 dataset 

demonstrate that our improved model achieves a 3.9% increase 

in mAP50 compared to the YOLOv11n baseline, while 

maintaining comparable computational complexity and 

parameter efficiency. 

 

Index Terms—Deep learning, remote sensing image, defect 

detection，yolov11 

 

I. INTRODUCTION 

Remote sensing images play a crucial role in precision 

agriculture, geological disaster monitoring, and military 

defense[1]. However, the dense distribution of objects, scale 

variations, and complex environmental factors in these 

images[2] pose significant challenges to object detection, 

making the reduction of false positive and false negative rates 

a critical issue in this field[3]. 

Deep learning models for object detection are categorized 

into two types: two-stage models represented by SPPNet[4] 

and Fast R-CNN[5] offer high accuracy but slow speed, 

while single-stage models like YOLO[6-9] provide fast 

inference but limited small object detection capability. As a 

classic single-stage algorithm, YOLO is renowned for its 

real-time performance and efficiency, yet parameter 

complexity and computational cost remain key constraints 

for its application. Despite YOLOv11's superior 

performance, its complex structure hinders deployment on 

edge devices. 

Based on YOLOv11n, this study proposes the RS-YOLO 
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algorithm with the following key innovations: 

(1)To achieve model lightweight, the Bottleneck structure of 

C3K2 is improved by adopting a more lightweight structure 

while maintaining detection accuracy with minimal 

degradation. 

(2)A dynamic detection head (Dyhead) with multiple 

attention mechanisms is introduced, enabling the model to 

focus more on dense small target regions and extract 

enhanced small target features. Model performance is further 

improved by integrating three attention functions: scale, 

spatial, and task-oriented attention. 

(3)The SPD module is incorporated into the feature 

extraction network, allowing the network to obtain feature 

maps without information loss during downsampling, 

expanding the receptive field and enhancing model detection 

performance. This approach better preserves feature map 

details and contextual relationships while reducing small 

target feature loss in low-light scenarios. 

(4)To improve network model convergence speed, the 

boundary fitting loss function is replaced from CIoU to 

dynamic non-monotonic focusing Wise IoU, reducing the 

impact of annotation quality on loss convergence and 

suppressing background interference. 

II. YOLOV11 MODEL 

The architecture of YOLOv11 incorporates several 

innovative design elements. At the input level, enhanced 

Mosaic data augmentation implements random image 

manipulation techniques, strengthening the model's 

adaptability to diverse real-world scenarios and complex 

backgrounds. 

The backbone network comprises four key modules: Conv, 

C3K2, C2PSA, and SPPF. The Conv module optimizes 

image resolution and channel dimensions for feature 

extraction. C3K2 integrates global semantic context with 

local target information, enhancing the detector's focus on 

critical regions. The C2PSA module implements cross-stage 

partial spatial attention, excelling at processing small and 

occluded objects through position-sensitive attention 

mechanisms. SPPF conducts multi-scale feature pooling, 

enabling flexible processing of varied input dimensions while 

expanding the receptive field. 

In the neck network, multi-level feature map fusion 

enhances the model's capability to handle diverse scale 

scenarios. The detection head adopts a decoupled 

structure[10], separating target localization and classification 

into independent branches. This design, combined with 

YOLOX's Anchor-Free mechanism[11-15], optimizes small 

target edge prediction while reducing hyperparameters and 

computational complexity. The architecture employs 

depth-wise separable convolution to minimize computational 
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redundancy, achieving enhanced operational efficiency while 

maintaining detection accuracy.The structure of the baseline 

model for YOLOv11 is depicted in Figure 1. 

 
Fig. 1 YOLOv11 network structure 

 

III. IMPROVEMENT METHODS 

Building upon YOLOv11, we propose comprehensive 

architectural enhancements targeting feature fusion, context 

processing, and loss computation. Key improvements include 

PConv for C3K2 module optimization, SPD Conv for 

downsampling, Dyhead for detection, and WIOU loss for 

boundary regression. The enhanced architecture is depicted 

in Figure 2. 

 
Fig. 2 Improved YOLOv11 model 

A.  C3K2_Faster 

Despite YOLOv11's improved accuracy over its 

predecessors, its complex architecture and substantial 

parameter count, particularly in the C3K2 module's 

bottleneck structures, lead to redundant channel information 

during feature extraction. While lightweight networks like 

MobileNet[16], ShuffleNet[17], and GhostNet[18] employ 

deep or group convolution for spatial feature extraction, these 

approaches, though reducing FLOPs, often increase memory 

access costs and computational fragmentation, necessitating 

additional compensatory structures. 

CHEN et al.[20] introduced PConv (Partial Convolution) 

in their Faster Neural Networks framework, offering an 

efficient solution to these challenges. PConv selectively 

convolves only specific input channels while preserving 

others, effectively reducing computational redundancy and 

memory access while maintaining network performance. The 

preserved channels undergo subsequent 1×1 convolutions, 

ensuring comprehensive feature utilization. 

Drawing inspiration from the PConv concept, this paper 

innovatively designs the Faster Block structure to replace the 

original Bottleneck components in YOLOv11's backbone 

network, constructing a novel C3K2_Faster module. The 

innovation of Faster_Block lies in its selective convolution 

operation on only 1/4 of the input channels, coupled with 

lightweight 1×1 convolutions, reducing the computational 

overhead of each module to approximately 1/16 of the 

original Bottleneck. Figure 3 illustrates the C3K2_Faster 

module. 

 
Fig. 3 C3K2_Faster Module 

 

B. Dyhead 

Despite YOLOv11's detection head's strong performance, 

its linear feature transmission design and simplified 

aggregation mechanism limit multi-scale information capture. 

While depth-wise separable convolutions reduce 

computational overhead, the current structure lacks adaptive 

feature fusion capabilities, necessitating architectural 

optimization for enhanced detection performance. 

Inspired by [21], this study introduces Dynamic Head, a 

multi-scale detection architecture that unifies scale-aware, 

spatial-aware, and task-aware attention mechanisms through 

dimensional-specific feature tensor integration. 

To address the computational complexity challenges 

associated with direct self-attention implementation, 

Dynamic Head employs an innovative sequential design. The 

attention mechanism is decomposed into three independent 

dimensions: scale, spatial, and task-oriented, processed 

sequentially to enable focused feature enhancement. The 

scale attention module learns semantic level importance for 

target feature enhancement, while spatial attention captures 

object transformation information, improving model 

adaptability to rotation and scaling. Task-oriented attention 

guides individual feature channels in executing specific 

detection tasks.Figure 4 illustrates the internal structure of 

three attention modules in Dyhead. 
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Fig. 4 Dyhead Internal Structure 

C. SPD Conv 

Current models employ strided convolution layers for 

feature map downsampling, which, while expanding the 

receptive field and reducing computational costs, inevitably 

results in fine-grained information loss. This information 

degradation is particularly evident when processing low-light 

remote sensing images: object contours, already blurred due 

to insufficient illumination, become increasingly indistinct 

through multiple convolution and pooling layers, with 

detailed features progressively weakening during layer-wise 

transmission, leading to inefficient feature learning. 

To address the fine-grained feature loss in the original 

model's downsampling module, this paper proposes 

integrating the SPD-Conv[22] module into YOLOv11's neck 

network. Comprising spatial-depth layers and non-strided 

convolution layers, this module effectively preserves 

dimensional information during downsampling operations. 

This design not only enhances the network's feature fusion 

capabilities but also enables more granular feature learning. 

Compared to traditional downsampling methods, SPD-Conv 

better preserves small object features, significantly 

improving the model's detail capture capability. 

SPD-Conv operates through a spatial-depth separation 

sampling strategy for lossless feature downsampling. Given a 

feature map T of size cwh, it samples one pixel from each 

row and column, generating four sub-feature maps of size c. 

These sub-feature maps are subsequently combined to form a 

2x downsampled feature map of size 4c that retains all 

information. This design integrates width and height feature 

information into the channel dimension, expanding the 

channel count fourfold. Figure 5 illustrates the SPD-Conv 

layer with a scaling factor n of 2. 

 
Fig. 5 SPD Conv Working Mechanism 

D. WIOU 

The conventional CIoU loss function implemented in 

YOLOv11, despite incorporating multiple geometric factors 

such as centroid distance, overlap ratio, and aspect ratio, 

exhibits limitations in handling training sample imbalances. 

The geometric metrics' inherent bias towards penalizing 

low-quality samples results in loss oscillation and 

compromised convergence efficiency. This study proposes 

adopting the WIoUv3 loss function to optimize annotation 

quality robustness and small aircraft detection performance. 

The mathematical formulation is expressed as: 

LWIoUv3 = rLWIouv1,r = 
βδαβ−δ                                                (1)                       

β=
LIOULIOU̅̅ ̅̅ ̅̅ ̅∈[0,+∞)                                                                (2) 

Where α  and δ  are hyperparameters, LIOU̅̅ ̅̅ ̅̅  is a dynamic 

variable, and the criteria for dividing the quality of the anchor 

frames are also dynamic. This allows WIoUv3 to adopt the 

gradient gain assignment strategy that best matches the 

current situation at any given moment.Figure 6 illustrates the 

principle of the Wise-IoU v3 loss function. The blue section 

represents the actual box, while the green section represents 

the predicted box. 

 
Fig 6 Schematic of Wise-IoU v3 

IV. .EXPERIMENT 

All experiments were performed on Ubuntu 22.04 LTS 

with an NVIDIA GeForce RTX 4090 (24GB VRAM), 

implementing PyTorch 2.0 and CUDA 11.8. 

A. Dataset 

The VisDrone2021 dataset,developed at Tianjin 

University, contains 8,629 drone-view images (6,471 

training, 548 validation, 1,610 test) across ten object 

categories including various vehicles and pedestrian types 

B. Experimental Environment Configuration 

All models shared identical hyperparameters (Table 1) to 

ensure fair comparison. Critical parameters encompass input 

resolution, training epochs, and convergence controls 

(learning rate, momentum, weight decay). Mosaic 

augmentation (close_mosaic=10) was implemented to 

enhance training data diversity through controlled image 

fusion. 

Table 1.  

Model training hyperparameter settings 

Hyperparameter 

Options 

Setting 

Input Resolution 

Initial Learning Rate 0 

(lr0) 

Learning Rate Float 

(Irf) 

Momentum 

Weight_decay 

Batch-size 

640x640 

0.01 

0.01 

0.878 

0.0005 

8 

300 

10 
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C. Ablation experiments 

The effectiveness of proposed improvements was 

evaluated through systematic ablation studies (Table 2). 

Performance enhancement was analyzed by progressively 

incorporating different modules, where "√" and "×" denote 

the presence and absence of methods respectively. D, P, F, 

and W represent Dyhead, SPDconv, C3K2_Faster, and 

WIoU loss function implementations. 

 

Table 2 

Results of ablation experiment. 

Opt D P F W mAP@0.5(

%) 

Params/

M 

FLOPs/

G 

1     33.0 2.62 6.6 

2 √    36.1 3.14 7.8 

3 √ √   36.5 3.25 8.1 

4 √  √  32.6 2.39 5.4 

7 √ √ √  36.7 3.0 7.9 

8 √ √ √ √ 36.9 3.0 7.9 

 

Ablation results in Table 2 demonstrate the effectiveness 

of proposed improvements. From the baseline's 33.0% 

mAP@0.5, sequential integration of modules culminates in 

36.9% mAP@0.5 with the full configuration,while 

maintaining reasonable computational efficiency . 

D. Comparative experiments 

To further validate the effectiveness of our proposed 

method, comparative experiments were conducted against 

existing classical approaches on  VisDrone2021 datasets 

under identical training parameters. The results are presented 

in Table 3. 

Table 3 

Comparative experimental results 

Algorithm 

Model 

FLOPs 

(G) 

Parameter

s 

（M） 

mAP@0.5(

%) 

YOLOv3-tiny 14.3 9.52 23.3 

YOLOv5n 7.1 2.5 33.1 

YOLOv8n 8.7 3.2 34.5 

YOLOv10n 6.5 2.3 34.0 

YOLOv11n 6.5 2.62 33.0 

RS-Yolov11 7.9 3.0 36.9 

Comparative experiments with mainstream YOLO-series 

models demonstrate that our proposed model exhibits 

superior detection performance and robust generalization 

capability. While achieving performance improvements, the 

model maintains reasonable computational complexity, 

indicating that our proposed enhancements achieve an 

excellent balance among model efficiency, detection 

accuracy, and generalization ability. 

V. CONCLUSION 

This study addresses the challenges in remote sensing 

image detection, particularly focusing on densely distributed 

targets with significant scale variations under complex 

backgrounds, while reducing model parameters for improved 

deployability. Our methodology incorporates several key 

improvements to YOLOv11: 

we replace the original bottleneck structure with 

Faster_Block to reduce the computational complexity of the 

C3K2 module. The conventional detection head is 

superseded by a Dynamic Head that unifies scale, spatial, and 

task attention mechanisms, enhancing the network's 

capability to detect small targets in complex scenarios.we 

introduce SPD convolution for downsampling, facilitating 

feature fusion across different scales and improving detection 

accuracy. The WIOU loss function replaces the original 

CIOU loss to address the penalty term failure during 

prediction-ground truth box overlap, thereby enhancing 

localization precision.Experimental validation on the 

VisDrone2021 dataset demonstrates a 3.9% improvement in 

mean Average Precision compared to the original 

YOLOv11n, validating both the effectiveness and 

applicability of our proposed enhancements. 
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