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Abstract— The object of the paper is to study Lorentzian almost 

para- contact manifolds (briefly LAP−manifolds) satisfying 

certain curva- ture coditions on conharmonic curvature tensor. 

In the present paper we discuss about conharmonically 

pseudosymmetric, partially Ricci- pseudosymmetric, 

conharmonically φ−symmetric and φ−conharmonically flat 
LAP−manifolds.Specially, we study LAP−manifold with 
conhar- monically flat curvature tensor which is locally 

isometric with unit sphere Sn(1) 
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Index Terms— Lorentzian almost paracontact manifold, 

φ−Conharmonically flat, conharmonic curvature tensor, 

η−Einstein manifold 

 

I. INTRODUCTION 

  Paracontact geometry, in particular, is important due to its 

connection with the theory of para-Kahler manifolds and its 

relevance in pseudo-Riemannian geometry and mathematical 

physics. Recently, LAP geometry has emerged as an 

intriguing and vital area within differential geometry. 

 In 1989, K. Matsumoto introduced the concept of 

LP−Sasakian manifolds [85]. This concept was independently 
introduced by I. Mihai and R. Rosca [87]. Lorentzian 

para-Sasakian (LP-Sasakian) manifolds have been further 

explored by K. Matsumoto and I. Mihai [86], U. C. De and A. 

A. Shaikh [88], and many others ([13], [21], [93], [119], 

[123]). K. Matsumoto and T. Adati obtained notable results 

regarding conformally recurrent and conformally sym46 

metric P-Sasakian manifolds [2]. The idea of a 

semi-symmetric connection on a differentiable manifold was 

first introduced by Friedmann and Schouten in 1924 [49]. In 

2008, Venkatesha and C.S. Bagewadi [127] generalized the 

concept of locally concircular ϕ-symmetric LP-Sasakian 

manifolds by obtaining results on concircular ϕ-recurrent 

LP-Sasakian manifolds. 

 A transformation of an n−dimensional Riemannian manifold 
N that maps every geodesic circle in N to another geodesic 

circle is known as a concircular transformation ([78], [133]). 

Such a transformation is always conformal [78]. Significant 

interest attached to a special type of conformal 

transformations is known as conharmonic transformations 

(i.e., conformal transformations that keep the property of 
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smooth harmonic functions). In 1957, Y. Ishii [71] introduced 

this type of transformation. It is easy to verify that this tensor 

is an algebraic curvature tensor which has classical symmetry 

properties of the Riemann curvature tensor. The completion 

of a Riemannian structure to almost Hermitian structures 

allow additional symmetry properties of the conharmonic 

curvature tensor. 

 A rank four tensor L that remains invariant under 

conharmonic transformation for a 2n + 1−dimensional 
Riemannian manifold M

2n+1
 , is given by[71] 

where R denotes the Riemannian curvature tensor of type (0, 

4) and L denotes the conharmonic curvature tensor of type (0, 

4) defined by 

                      (3.1.2) 

Where R is the Riemannian curvature tensor of type (1, 3) and 

S denotes the Ricci tensor of type (0, 2). The Conharmonic 

curvature tensor has been studied by Abdussattar [1], z r 

[94], Siddiqui et al. [122], Ghosh et al. [51] and many others. 

We exhibit our work as follows: Section 2 contains brief 

account on LAP−manifolds which will be used later. In 
Section 3, we study conharmonically pseudosymmetric 

LAP−manifold and find some results. Section 4 deals with 
partially Ricci-pseudosymmetric LAP−manifolds. Section 5 
is devoted to the study of conharmonically ϕ−symmetric 

LAP−manifolds. In the last section we discuss about ϕ− 

conharmonically flat LAP−manifold and prove that it is a 
generalized η−Einstein manifold and also locally isometric 
with unit sphere S n (1) 

II. PRELIMINARIES  

An n-dimensional differentiable manifold N is said to be a 

Lorentzian almost para-contact manifold, if it admits an 

almost para-contact structure (ϕ, ξ, η, g) consisting of a (1, 1) 
tensor field ϕ, vector field ξ, 1-form η and a Lorentzian metric 
g satisfying 

                                     

                                                

(3.2.1) 

                                                                                                                             

(3.2.2) 

                                      

                                                         

(3.2.3) 
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(3.2.4) 

for any vector field U, V on M. Such a manifold N is termed 

as Lorentzian para-contact manifold and the structure (ϕ, ξ, η, 
g) a Lorentzian para-contact structure [85].  

Definition 2.1. A LAP manifold N is called Lorentzian 

para-Sasakian manifold or briefly LP−Sasakian manifold if 
(ϕ, ξ, η, g) satisfies the conditions 

                                                  

                                                      

(3.2.5) 

                               

                                            

(3.2.6) 

for U, V tangent to M, where ∇ denotes the covariant 

differentiation with respect to Lorentzian metric g. 

Moreover, the curvature tensor R, the Ricci tensor S and the 

Ricci operator Q in a LP−Sasakian manifold N with respect to 
the Levi-Civita connection ∇ satisfies the following relations 

[101] 

                            

                                             

(3.2.7) 

                                           

                                              

(3.2.8) 

                                            

                                              

(3.2.9) 

                                                 

                                                      

(3.2.10) 

                                      

            (3.2.11) 

                             

                                                  

(3.2.12) 

for all vector fields For all vector fields U,V,W  

Definition 2.2. A LAP−Sasakian manifold is said to be an 

η−Einstein manifold [101] if its Ricci tensor S of the 

Levi-Civita connection is of the form 

 S (U, V ) for all U, 

V ∈ Γ(T M)                                            (3.2.13) 

 where a and b are smooth functions on the manifold  

Definition 2.3. A LAP manifold  is called Lorentzian 

para-Kenmotsu manifold if (  satisfies the 

conditions          

                     (U),                                                                       

(3.2.14) 

For any vector field U,V on M. 

In the Lorentzian para-Kenmotsu manifold ,we have 

                                                                                                             

(3.2.15) 

 

Where the operator of covariant differentiation with 

respect to the Lorentzian metric g. 

Moreover, the curvature tensor R, the Ricci tensor S and the 

Ricci operator Q in a Lorentzian para-Kenmotsu manifold N 

with respect to the Levi-Civita connection ∇ also satisfies the 

relations (3.2.7)-(3.2.12). 

 

Example [126] Let M = {( , 

w)}   = ( , where  and i  

= 1,2,3,….,m) denote an n(= 2m + 1)- dimensional smooth 

manifold.  

Let us define the structure tensor  as: 

 

If g represents Lorentzian metric  of  defined by  

 
Then by linearity properties, we can easily show that the 

relations 

 

Hold for all vector fields X on  Thus (M,  

forms a Lorentzian para-Kenmotsu manifold with respect to 

the     and 

, where i = 1,2,…,m. 

Definition 2.4. The concircular curvature tensor of type 

(1,3) on LAP-manifold  of dimension n is defined by 

             

                                            (3.2.16) 

For any vector fields X,Y,Z on  where R is the curvature 

tensor and r is the scalar curvature. 

Definition 2.5. The conharmonic curvature tensor  of type 

(1,3) on LAP- manifold  of dimension n is defined by 

            (3.2.17)  

For all vectors fields X,Y,Z on  where  is the Ricci 

operator, i.e. 

 

If  vanishes identically then we say that manifold is 

harmonically flat [42]. 

III. CONHARMONICALLY PSEUDOSYMMETRIC 

LAP-MANIFOLDS 

A Riemannian manifold  is said to be conharmonically 

pseudosymmetric if  

                                                                                                                  

(3.3.1) 

Holds on the set  at , where   is 

some function on  , R is curvature tensor,  is 

conharmonic curvature tensor and is (0, k + 2) tensor field 

,Let an N-dimensional (n > 2) LP-sasakian manifold  be a 
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conharmonically pseudosymmetric .Then from (3.3.1) we 

have for X,Y,Z on M, 

                     

                                    (3.3.2)  

Where X Y is the endomorphism and defined as following 

for a symmetric 

(0,2)-tensor field B on M for U,V,W on M 

                      

                                                      

(3.3.3) 

Now the left hand of (3.3.2) in view 0f (3.2.8) and right hand 

side of (3.3.2) in view of (3.3.3) reduces the (3.3.2) in 

following form 

 

 
                                       

  (3.3.4)                                   

Which implies that either  or  

 

 
                                       

  (3.3.5) 

Taking inner product of (3.3.5) with  and using (3.2.1) and 

(3.2.2), we get 

 
                                           

.                              

(3.3.6) 

By simplifying we get  

                                                                                                                            

(3.3.7) 

Which implies that M is conharmonically flat. 

Therefore we can state that: 

Theorem 3.1. If an n−dimensional (n > 2) LAP manifold  

is conharmonically pseudosymmetric then  is either 

conharmonically flat or locally isometric to the unit sphere 

S
n
(1). 

Corollary 3.2 If  on  then an n−dimensional (n > 2) 

LAP conharmonically pseudosymmetric manifold M is 

conharmonically semisymmetric then M is conharmonically 

semisymmetric. 

Corollary 3.3. if an n-dimensional (n>2) Lorentzian almost 

paracontact manifold M is conharmonically semisymmetric 

then M is locally isometric to the unit sphere S
n
(1). 

Since  need not be zero in general so also there exists 

conharmonically pseudosymmetric manifolds which are not 

conharmonic semisymmetric. So if , it is easy to see 

that R. =  which implies that the pseudosymmetric 

function . Hence, we can state the following: 

 Theorem . Every LP−Sasakian manifold is conharmonically 
pseudosymmetric of the form R. =   

3.4 Partially Ricci-pseudosymmetric LAP−manifolds  

In this section we discuss the conditions about LP−Sasakian 
manifold (which is a type of LAP−manifold) for which it is to 

be partially Ricci-pseudosymmetric.  

Definition 3.4.1. An n−dimensional (n > 2) LP−Sasakian 
manifold M is said to be partially Ricci-pseudosymmetric if 

                                                                                                           

(3.4.1) 

             

                           (3.4.2) 

And    

 

                                                                      

(3.4.3) 

The equation (3.4.1) can be written using (3.4.3) in following 

form 

                 

                                            

(3.4.4) 

Let an n-dimensional (n>2) LP-Sasakian manifold M is 

partially Ricci-pseudosymmetric, Then we can get from 

(3.3.3) and (3.4.4) for all U,V,X and Y on M, 

                                     

                                               

(3.4.5) 

 
Putting Y = V = in above expression and using (3.2.8), 

(3.2.11), (3.3.3) and (3.4.5) , we get 

 
                       =  

  

Hence get 

 

                               

 = 0.                    

(3.4.6) 

The equation (3.4.6) has two possibilities either 

 

 

The (2) shows that manifold is Einstein manifold. 

Therefore we can state that: 

 

Theorem3.4.1 . An n−dimensional (n > 2) partially 
Ricci-pseudosymmetric LP−Sasakian manifold M is an 
Einstein manifold iff   

 3.5 Conharmonically ϕ−symmetric LAP−manifolds  

In this section we study about conharmonically ϕ−symmetric 

Lorentzian para-Kenmotsu manifold (which is a type of 

LAP−manifold) and find the interesting result. 
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 Definition 3.5.1. A Lorentzian para-Kenmotsu manifold M 

is said to be conharmonically ϕ−symmetric if the 

conharmonic curvature tensor  satisfies 

                                                  

                                                 (3.5.1) 

For all vector fields X,Y,Z and U on M. 

Let a Lorentzian para-Kenmotsu manifold N of dimension 

n(> 2) be conharmonically ϕ−symmetric. Then the above 

relation (3.5.1) can be written as following in view of (3.2.1) 

and (3.2.2), 

                             

                                            

(3.5.2) 

Using (3.5.2) and (3.1.1) for dimension n, and putting X = V = 

 (where { }, i = 1, 2, ...., n, is an orthonormal basis of the 

tangent space at each point of the manifold M ) and taking 

summation over i, we get 

                                  

)                              

(3.5.3) 

 
                                  

  

                                   = 0.                                                                                                   

Putting  in (3.5.3) , we get 

                                  

                                     

(3.5.4) 

                                           - 

     

                                                                         

From (3.5.4) we get 

                     = 

                                                   (3.5.5) 

 
                                                                = 0. 

                                                                                             

(3.5.6) 

And, 

                                                                                                                 

(3.5.7) 

Using (3.5.5)-(3.5.7) and from (3.5.4)  , we obtain                                                 

                                                                                                              

(3.5.8) 

The above result (3.5.8) implies that r is constant. Therefore, 

we can state the following: 

Theorem 3.5.1. If an n−dimensional Lorentzian 
para-Kenmotsu manifold M is conharmonically ϕ−symmetric 

then the scalar curvature r is constant. 

 3.6 ϕ− Conharmonically flat LAP−manifolds  

In this section we study about ϕ− conharmonically flat 

Lorentzian para-Kenmotsu manifolds and also prove an 

interesting result on it. The notion of ϕ− conharmonically flat 

K−contact manifolds was first introduced by G. Zhen [135]. 
 Analogous to the (3.2.17), the conharmonic curvature tensor 

 of type (1, 3) for X, Y, Z on  is defined by 

           (3.6.1) 

Definition 3.6.1. A Lorentzian para-Kenmotsu manifold of 

dimension n be a conharmonically flat if  

                                                                                        

(3.6.2)  

For any vector fields X,Y,Z on M. 

Let a n-dimensional (n>2) lorentzian para-Kenmotsu 

manifold  be   conharmonically flat. Then from 

(3.6.2), it follows that 

 
 

From (3.6.1) and (3.6.3), we have 

                        (3.6.4) 

Let {  be a orthonormal basis of vector 

fields in M. Using that {  is also 

a orthonormal basis in M, if we put X = W =  in (6.4) and 

sum up with respect to I, we have 

 
                                                                                                                                          

(3.6.5) 

It can be easily verify that 

                                

            (3.6.6)          

                                                                                        

(3.6.7)   

 

 

               

                          (3.6.8) 

                                      

                                                  

(3.6.9) 

So by using (3.6.6)-(3.6.9) the equation (3.6.5) will become 

                                                                                                                      

(3.6.10) 

http://www.ijerm.com/
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On solving we obtain 

 
Using (3.2.3), (3.2.12) and (3.6.11), we get 

 
               On contracting, we get 

 
Putting the value of (3.6.13) in (3.6.12), (3.6.12) turns into 

                                      

                                           

(3.6.14) 

Which shows that𝒩 is an Einstein manifold, this leads us 

to state the following: 

Theorem 3.6.1. An n−dimensional (n > 2) 
ϕ−conharmonically flat Lorentzian para-Kenmotsu manifold 

is a generalized η−Einstein manifold. 
 Theorem 3.6.2. A conharmonically flat Lorentzian 

para-Kenmotsu manifold N is locally isometric with the unit 

sphere S
n
 (1), where S is a Lorentzian manifold of sectional 

curvature one. 

 Proof. If  then we get from (3.2.17) that 

   

                         (3.6.15)              

Putting in (3.6.15) and using (3.2.10) and (3.2.11) we 

obtain 

        (3.6.16)              

Putting in (3.6.16) and using (3.2.1) we get 

[-(n-1) 

X-(n-1                                               

(3.6.17) On simplifying (3.6.17), we get  

                                                                                                                         

(3.6.18) 

Proceeding in the same way with  in (3.6.16) we get 

                                                                                                                         

(3.6.19) 

Using (3.6.18) and (3.6.19) in (3.6.15) we have 

          

                       (3.6.20) 

Putting  and using (3.2.8) and (3.2.11) we get 

      [S (Y, Z) - 

(n-1                  (3.6.21)   

On simplification we get 

                                                                                               

(3.6.22) 

Therefore, manifold is an Einstein manifold. 

Now, putting (3.6.18), (3.6.19) and (3.6.21) in (3.6.15) we 

have 

        (3.6,23) 

Finally, we get  

                                            

                                

(3.6.24) 

 

 

The above equation (3.6.24) implies that M is of constant 

curvature 1 and consequently it is locally isometric to the unit 

sphere S
n
 (1).  

This completes the proof of the theorem. 

 Corollary 3.6.1. If an n−dimensional Lorentzian 
para-Kenmotsu manifold M satisfies the condition 

 then it is locally isometric to the unit sphere 

S
n
 (1) where  denotes the concircular curvature tensor on 

n−dimensional Lorentzian para-Kenmotsu manifold M.  

Definition 3.6.2. An n−dimensional Lorentzian 

para-Kenmotsu manifold M is said to be conharmonic 

semi-symmetric if 

                                           .                                                                       

(3.6.25) 

where R is the curvature tensor and X, Y are vector fields on 

M. 

 Corollary 3.6.2. An n−dimensional Lorentzian 
para-Kenmotsu manifold M is conharmonic semi-symmetric 

if and only if it is conharmonically flat Lorentzian 

para-Kenmotsu manifold.  

Proof. From Theorem (3.6.1) we know that every 

conharmonically flat Lorentzian para-Kenmotsu manifold M 

is an Einstein manifold. Also, we know that every Einstein 

manifold is conharmonic semi-symmetric but in general, the 

converse is not true. Here, we prove that in a Lorentzian 

para-Kenmotsu manifold  which implies 

that the manifold M is conharmonically flat. 

 If , we have 

                        

                                                

(3.6.26) 

 
Taking the inner product of the above equation (3.6.26) with 

 we obtain 

                                                                

                     

  

Using (3.2.1), (3.2.5) and (3.2.8) we have                                          

  

On simplification above equation becomes 

 
Therefore, M is conharmonically flat Lorentzian 

para-Kenmotsu manifold. 
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