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 
Abstract— This paper studies the optimal trajectory tracking 

control strategy of robotic manipulators in the presence of 

external disturbances. Super-twisting algorithm (STA) is used 

as switching controller to effectively weaken chattering.  The 

choice of the barrier function as the gain of STA avoids the 

estimation of the disturbance upper bound and does not require 

the design of the low-pass filter. The stability of the closed-loop 

system is proved by Lyapunov theory. Finally, the effectiveness 

of the proposed method is verified by simulation experiments. 

 
Index Terms—Sliding mode control; Robotic manipulator; 

Barrier function; Super-twisting algorithm .  

 

I. INTRODUCTION 

        Nowadays, with the development of industries, robots 
are also being widely used in many fields to assist or replace 
humans in various tasks [1], such as aerospace [2], medical 
treatment [3], transportation [4], high precision welding [5] 
and so on. However, achieving fast and high-precision 
trajectory tracking for multi-joint robots has been a 
challenging goal due to the difficulty of obtaining accurate 
dynamic models and external disturbance that can 
significantly degrade the performance of the robot system. To 
achieve high-speed and high-precision trajectory tracking of 
robots, many control strategies have been proposed by 
scholars, including robust control [6], model predictive 
control [7], fuzzy control [8], and sliding mode control [9] 
(SMC). 

SMC is always used in robot trajectory tracking research 
due to its advantages of fast response, good transient 
performance, easy implementation and tuning, and strong 
robustness against bounded external disturbances and system 
uncertainties [10]. In [11], an adaptive arctangent terminal 
SMC strategy is proposed, and a new adaptive law is designed 
to approximate the upper bound of the unknown disturbance. 
In [12], a robust adaptive fuzzy terminal SMC strategy with a 
low-pass filter is proposed for the trajectory tracking problem 
of a manipulator with external disturbance and dynamic 
uncertainty. This strategy can mitigate the adverse effects of 
model uncertainty and weaken the chattering of control inputs 
for stable control. In [13], an adaptive integral SMC strategy 
based on state observer is proposed for the trajectory tracking 
problem of flexible joint robots. A new adaptive law is also 
designed as the gain of the switching controller to eliminate 
the requirement for known disturbances and upper bounds on 
the uncertainty. However, all the above methods use adaptive 
strategies to estimate the upper bound of the external 
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disturbance, and all of them need to solve the integral. This 
undoubtedly increases the amount of computation 
significantly. 

The main objective of these techniques is to dynamically 
adjust the control gains in order to minimize them as much as 
possible while still providing sufficient counteraction against 
disturbances. These disturbances can be counteracted by 
increasing the gain to ensure the sliding mode is achieved. 
Once the sliding mode is reached, the high frequency control 
signal is filtered and used to provide information about the 
disturbance in the controller gain. The sliding mode controller 
gain is determined as the sum of the filtered signal and a 
constant value to compensate for any potential discrepancies 
between the real disturbance and its estimated value obtained 
through filtering. However, these  requires knowledge of the 
minimum and maximum allowable values for the adaptive 
gain. According to these approaches, the gain increases until 
the sliding mode is achieved, and then decreases until the 
sliding mode is lost, indicating that the desired state is no 
longer being reached. These approaches ensure that the 
sliding variable converges to a neighborhood around zero 
within a finite time, without significantly overestimating the 
gain. The main limitation of these approaches is that the size 
of the aforementioned neighborhood and the convergence 
time depend on the unknown upper bound of disturbances, 
which cannot be known in advance. 

Therefore, a novel adaptive SMC strategy based on 
barrier function is proposed for manipulator systems with 
model uncertainty and external disturbance. The barrier 
function is used as a gain strategy for STA, which does not 
require knowledge of the upper bound of the disturbance and 
weakens the chattering. 

The rest of this paper is structured as follows: In Section 
II, the model description of the manipulator and some 
preparations are given. The barrier function-based STA 
terminal sliding mode controller is designed and its stability is 
analyzed in Section III. In Section IV, a set of simulation 
experiments demonstrate the effectiveness of the proposed 
method. Finally, the conclusion of this paper and the 
prospects for the future are given in Section V. 

II.  SYSTEM MODELLING AND PROBLEM STATEMENT 

Consider the dynamics of a complete n-jointed robotic arm, 
described by the following second-order nonlinear 
differential equation: 

       
 

( ) + ( , ) + ( ) =  + dM q q C q q q G q q      (1) 
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where 
2 2

q
M R

  is the positive definite inertia matrix; 

2 2( , )C q q R
  is the vector of centrifugal force and 

coriolis force;
2( )G q R  is the vector of gravitational 

torques; 
2

q R  is the vectors of joint angular position, q
 

and q is the velocity and acceleration, 
2

R   is the vector 

of joint control torque and 
2

d
R   denotes the external 

disturbance. Here, we substitute ( , ) ( )C q q q G q with 

( , )L q q . 

Alternatively, Eq. (1) can be written as: 
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where the 1q  and 2q  are the angular position of joints, 1  

and 2  are the control torques. Other nonlinear functions are 

given: 
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where 1r  and 2r  are the Length of lever, 1m  and 2m  are the 

mass, g
 
is an vector of gravitational terms. 

Considering the system uncertainty, the actual dynamics 
matrix and vector are described as follows: 

         

0
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where M , C  and  G  are system model 

uncertainties, 0G  is thethe vector of gravitational torques, 

0M  is the positive definite inertia matrix and 

( , ) n
C q q R  is the vector of centrifugal force and coriolis 

force, and 0 0( ( ) 2 ( , )) 0T
x M q C q q x  , which 

0 0( ) 2 ( , )M q C q q  is a skew symmetric matrix. 

Assumption: 0M  is bounded, and 1 0 2M   , 

which 1  and 2  are known normal number. 

Assumption: 0C  and 0G  satisfy the equations 

0C c  and 0G g , which c  and g  are normal 

numbers. 

Substituting Eq. (4) into Eq. (1), we can get: 
 

     0 0 0( ) ( , ) ( ) ( , , )dM q q C q q q G q I q q q                 (5) 

 

where ( , , )I q q q is the unknown uncertainty and 

( , , ) ( ) ( , ) ( )I q q q M q q C q q q G q    , which is 

bounded and the upper bound has already been given in [14].  
The following unequal are give: 

2

0 1 2( , , )I q q q c c q c q            (6) 
 

where 0 1,c c  and 2c  are positive constants. To reduce 

system disturbances and enhance robustness, the uncertainty 

and external disturbances d  is regarded as the disturbance 

of system ( , , , )H q q q t . One can get: 

0 0( ) ( , ) ( , , , )M q q L q q H q q q t    (7) 
Assumption:The disturbances of the closed-loop robotic 

manipulator arm system is bounded and complies with the 

0( , , , )H q q q t d ， 1( , , , )H q q q t d , which 0d  

and 1d  are bounded constants. 

Definition:According to the [15] and [16], in this study, 

the barrier function is given as follows: 

),(,)( 

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

 x
x

b
xLb

 

(8) 

where the b and   are positive constant. 

Considering the implementation of the barrier function, we 

define the ( , )L t s  as: 


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(9) 

For the definition of this barrier function, 0L  and 1L  are 

arbitrary positive constants. 

Lemma:[17] For this system: 
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(10) 

considering   ]),(sign[, 21

2/1

121 xxx
T   , one 

can get: 
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(12) 

 

If there exist ( )= T
V x P   and 
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1/2

1( )= T
V x x Q   and satisfy this equation: 

QPAPA
T                              

(13) 

which P Q，  are positive definite matrices and they are 

both symmetric. Based on these descriptions, and considering 

0T  as the initial time, the systems (10) will converge to the 

origin in finite time 1T . 

)(
2

0
2/1

1 TVT



                     

(14) 

where 
}{

}{}{

max

min
2/1

min

P

QP


  . 

III.  DESIGN OF CONTROLLER 

For the system (1), 
2

q R  is the vectors of joint angular 

position, 
2

d
q R  is used to represent the position vector of 

the desired joint angle.  
Define the tracking error as follows: 
 

de q q 
                              

(15) 
 
The time derivative of the error can be shown as: 
 

de q q 
                              

(16) 
Considering the property of finite time convergence, the 

designed terminal sliding mode is expressed as: 
 

s e e
                                  (17) 

 

where 1 2[ , ]T    and 1 2[ , ]T   are  positive 

parameter matrices. 
The equivalent controller is designed as follows: 
 

1 1( ( , ) ( ))
eq d

M C q q q G q e q
              (18)                                

The switching controller is designed as follows: 
 

1 2

2
1 20

( ) ( )
t

sw K s sign s K sign s d             (19) 

 

The 
2 1

1K R
  and 

2 1
2K R

 in (\ref{eq19}) are 

control gains, the implementation of sw requires the 

unknown upper bound of disturbance, and the value of  

1K and 2K . Consider the following variable gain of the 

switching controller that solves this problem. 
 

1 2

2
1 20
( , ) ( ) ( , ) ( )

t

sw L t s s sign s L t s sign s d             

(20) 

where the ( , )L t s  is the variable gain. 

  The proposed controller can be represented as follows: 

sw eq
                                         (21) 

 

Theorem:Under the action of the control signal (21), the 

obotic manipulator tracks the desired trajectory in finite time. 

Proof:Setting the following variable: 
1

22
1 2 2, | | ( ), ( )[ ] [ ]T T

z z z s sign s L sign s dt         (22) 

And we can take the derivative of (22). 

         
2

21
2

1
11

, 2
2 | |

0

L
z Az A

z
L

   
 
 

                     (23)  

Consider the Lyapunov function: 

1
T

V z Pz                                     (24) 

where P  is a symmetric positive-definite matrix: 

3

3 1

b d
P

d

 
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             (25)  

where a  and b  are position numbers and 
29b d . Taking 

the derivative of 1V  as follows: 

  1

1
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z
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where 
T

Q A P PA   . According to the definition of 

barrier function in (9), we divide the proof into two parts: 

1) When 10 t t  : We define the matrices A  and Q  

separately: 
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  and we 

can know sliding surface s  will converge to ( , )   in 

finite time: 

01= + nT T T                (28) 

2) When 1t t : We define the matrices A  and Q  
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1= +s mT T T               (30)  
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where 

2 2
2
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According to lemma, 

1

2
1 1

2
( )

m
T V T


  , we can know 

s will converge to zero in finite time: 

 

IV. SIMULATION EXPERIMENT 

This section describes the parameter selection as well as the 
experimental analysis. 

The barrier funtion: Slect 1 0.5st  ,when 10 t t  : for 

1L t s（ , ）: 1=L 7000 and 0 =L 1 ; for 2L t s（ , ）: 

1=L 500  and 0 =L 5 .When 1t t :for 1L t s（ , ）: =0.1  

and =600b ; for 2L t s（ , ）: =0.1  and =100b . And 

when 10 t t  : for 1L t s（ , ）: 1=L 1  and 0 =L 1 ; 

2L t s（ , ）: 1=L 1  and 0 =L 1 , when 1t t : for 1L t s（ , ）: 

=0.1  and =50b ; for 2L t s（ , ）: =0.1  and =50b .  

For the equivalent controller, we choose the following 
parameters: the desired trajectory is designed as 

[sin( ),cos( )]T

d
q t t   . However, for 1q  and 2q , we 

use a different expression for the sliding mode. 

[17,20]T  , [0.9,0.9]T  . 

For the system, we choose the following parameters: 

1 10m  , 2 1m  , 1 1r  ,  2 1r   and 9.8g  in (3). 

And the external disturbance 
20 20

[sin( ),cos( )]T

d
t t


 

 . 

The controller incorporating the barrier function which is 
described in the previous section demonstrates that the 
proposed scheme can guarantee the robotic manipulator to 
track the desired trajectory in finite time. In order to 
demonstrate the reliability of the proposed scheme, the 
detailed analysis of the simulation results is presented as 
follows: 

Fig. 1 depict the evolution of system states 1 2,q q  and the 

desired trajectory. According to the Fig. 1, it can be observed 

that 1q  can track the desired trajectory within 0.12s, and 2q  

can approach the desired signal within 0.21s. It's worth noting 

that both 1q  and 2q  tend to stable and there is no divergence 

trend in the simulation period. 

 

Fig 1. The tracking results of 1q  and 2q . 

 
 

Fig 2. The tracking errors of 1q  and 2q . 

 

 
 

Fig 3. The derivative of tracking results. 
 

Fig. 2 shows the tracking errors of angles 1q  and 2q , 

respectively. Moreover, the stability of tracking errors can be 

ensured in finite time, indicating that 1q  and 2q  have 

successfully tracked the desired trajectories. 
Fig. 3 illustrates the derivative of the system states and the 

desired trajectories about 1d
q  and 2dq . The correctness of 
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the derivative of the desired trajectory in Fig. 3 can be 
observed. Similarly to Fig. 1, the differentiated value of the 
actual trajectory is also consistent with the differentiated 
value of the desired trajectory over the same period of time. 

 
 

Fig 4. The derivative of tracking errors. 
 

 
 

Fig 5. Control input 1  and 2 . 

 
 
Fig. 4 illustrates the derivative of the tracking error. It can 

be seen that the derivative of the error of 1q  shows an 

increase and then a decrease, before converge to 0. The 

derivative of the error of  2q  decrease firstly and then 

converge to 0. 

In addition, the control inputs of 1  and 2   are presented 

in Fig. 5 demonstrating that the control action is really smooth, 
which means the chattering is mitigated and be used in real 
applications. Fig. 6 illustrates the evolution of the sliding 

surface  1s  and 2s .  1s  and 2s  converge to 0 within 0.12s 

and 0.21s, respectively. What's more, the chattering of sliding 
surface is mitigated according to the proposed adaptive 
super-twisting algorithm. 

 
 

Fig 4. Sliding surfaces 1s  and 2s . 

 
 

V. CONCLUSION 

In this paper, we propose a novel barrier function based 
STA SMC strategy for trajectory tracking of manipulators. 
Combining the barrier function with the STA, this strategy 
does not require knowledge of the upper bound of the 
disturbance, nor does it require a low-pass filter, and is 
capable of achieving finite-time stability of the system while 
weakening the chattering. Finally, the simulation results 
verify the effectiveness of the proposed method.  

Future work is the application of the proposed method in a 
practical industrial manipulator. 
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