
International Journal of Engineering Research And Management (IJERM) 

ISSN: 2349- 2058, Volume-11, Issue-06, June 2024 

                                                                                              8                                                                                  www.ijerm.com  

 
Abstract— This paper presents an observer-based 

event-triggered adaptive super-twisting controller for attitude 

tracking of a quadrotor unmanned aerial vehicles (UAVs) in the 

presence of matched and mismatched disturbances. Firstly, an 

observer-based adaptive super-twisting controller is designed to 

mitigate overestimation of gains and reduce chattering effects, 

thereby effectively addressing both matched and mismatched 

disturbances, and enhancing the control performance and 

robustness of quadrotor UAV. Furthermore, a dynamic 

event-triggered control strategy is employed, which flexibly 

determines the timing of controller updates based on the actual 

state variations of the system. This approach reduces 

unnecessary controller updates, saving communication and 

computational resources, and enhances system performance and 

efficiency. Finally, the superiority of the proposed method is 

validated through simulation and experimental results. 

 
Index Terms—Quadrotor UAV, Super-twisting algorithm, 

Adaptive sliding mode control, Disturbance observer, 

Event-triggered control 

 

I. INTRODUCTION 

Quadrotors UAVs are complex nonlinear systems with 
weak disturbance rejection capabilities. During actual flight, 
they are affected by both matched and mismatched 
disturbances. Matched disturbances such as air resistance and 
gravity can be compensated for by adjusting the control 
system. However, handling mismatched disturbances such as 
model uncertainties and sensor errors is more challenging. 
To overcome these challenges, researchers have explored a 
range of linear control strategies for achieving precise control 
of quadrotors [1]-[3]. However, as control requirements 
continue to increase, the limitations of linear control 
strategies become more apparent. They are sensitive to 
parameter variations in nonlinear systems. As a result, various 
nonlinear control methods have emerged and are widely 
applied in quadrotors control [4]-[6]. Sliding mode control 
(SMC), known for its robustness and insensitivity to nonlinear 
uncertainties and external disturbances, has gained more 
popularity in quadrotors applications. However, SMC suffers 
from chattering due to rapid switching caused by the sliding 
mode switching structure. To overcome this issue, the super 
-twisting algorithm has been proposed and successfully 
applied in robust control.The super-twisting controller relies 
on knowledge of the disturbance upper bound, which is often 
difficult to accurately determine in practical situations. Some 
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researchers have addressed this problem by designing 
methods with adaptive gains, effectively reducing the 
chattering [7]-[9]. Furthermore, the presence of model 
uncertainties and sensor errors in quadrotors can also lead to 
mismatched disturbances in the system, which cannot be 
completely suppressed by the SMC thus impacting control 
performance and stability. To address this problem, 
disturbance observers (DO) have been introduced to estimate 
and compensate for the mismatched disturbances, as they can 
directly compensate for the uncertainties in the system 
without affecting the performance of the original control 
method. Research scholars have focused on incorporating DO 
to enhance control performance and stability [10]-[11]. 

In addition, for resource-limited quadrotors, traditional 
fixed-period sampling control may not meet the requirements 
of high workload operations. To conserve communication and 
computational resources, some literature has proposed 
event-triggered control strategies [12]-[13]. However, these 
studies have shown a dependence of the system state on the 
triggering parameters, which limits the possibility of infinitely 
increasing the event interval time. Moreover, to ensure system 
stability, the control switching gain noticeably relies on the 
triggering parameters. In order to address these limitations, 
several studies have proposed improvements to control 
algorithms for sparse trigger sequences by utilizing adaptive 
trigger parameters and designing dynamic trigger parameters 
[14]-[15]. These studies have proposed effective solutions to 
better conserve resources considering the presence of 
matched disturbances. However, they are not effective in 
dealing with the presence of mismatched disturbances. 

In this paper, inspired by the aforementioned 
investigations, a novel event-triggered adaptive super- 
twisting control method based on an observer is proposed. By 
dynamically adjusting the gain, the overestimation of the gain 
is avoided, reducing the chattering phenomenon. 
Additionally, by combining the observer-based 
event-triggered mechanism with adaptive super-twisting 
method, the issue of mismatched disturbances is effectively 
addressed while conserving energy 

II. QUADROTOR ATTITUDE MODEL 

The model of quadrotor attitude can be given[16]-[17] 
 1

1 1 2[ ] [ ( , )( )]( )J U N d d d         (2.1) 

The state vectors are defined as: 
 1 2,x x    (2.2) 

The dynamic model is reformulated using the state-space 
format as follows: 

 1 2 1

2 2( , ) ( , )

x d

f x t g x tx U d

x  
   

  (2.3) 
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where 1
1 1 1 1( , ) [ ] (( , ))f x t J N xx x x   , 1

1[ ]( )xg J  , 1d  represents 

mismatched disturbances from a different channel than the 

control input, 2d  represents matched disturbance from the 

same channel as the control input. 
Before commencing the controller design, we provide the 

following assumptions and definitions: 
Assumption 1: Disturbances ( , )id x t  and their time 

derivatives in the quadcopter unmanned aerial vehicle system 

are bounded and satisfy id   . 

Assumption 2: The function F   satisfies the Lipschitz 
property, meaning for a Lipschitz constant L and for all 

6 1
1 2,x x R

  within a closed set D is valid as 

 1 2( ) ( ) ( )F x F x L e t    (2.4) 

. 

III. ATTITUDE CONTROLLER DESIGN 

To mitigate the influence of disturbances, the finite-time 
observer can be employed to approximate the disturbances: 
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 (3.1) 

where 1,2,...,i n , 1,2,..., 1j n i   , ( , )if x u f gu  , 0i

j   is the 

observer coefficient, [ ]ˆˆ ˆˆ , , ,i i i

n i

ix d d d
  are the estimated value of 

the corresponding actual variable [ ], , ,i i i

n i

ix d d d
 . 

The quadrotor attitude tracking error is defined as follows: 
6 1

1 2[ ]T T Tx x x R   , 1 11 [ , , ]T
dx x x e e e    , 12 1dx x x  , 

where 3 1
1dx R   is the desired attitude vector.  

Firstly, design the sliding mode as: 
3 11

11 2s Cx x x e R      , 3 6[ ]C I R    . 3 3  is a diagonal 

matrix, then the sliding surface is defined as: 

  1 1
1 2 1

6: : 0S x R s Cx x x e         (3.2) 

where, 1
1 1 1
ˆe d d  , we can set 2

6 1
1[ ]T T Tx x x R    , where 

2 12 1̂ dx x d x    , we can get: 

 
12 1

2 1̂

d
dx

x BU F BU D
x

F d d

             
     


 (3.3) 

where 6 1
1 2[ ; ]x x x R

   , 1
2 1

6[ ; ]dF x Fx R
   , 33 3 3 3 6[0 ; ]B I R

   , 
3 1

U R
 , 1 2 1̂[ ; ]D d d d   . 

The sliding mode attitude controller is designed as follows: 
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 (3.4) 

where, 6 1
1 2 1
ˆ ˆˆ ; ˆ[ ]D d d Rd    , meanwhile, the adaptive gains 

are designed as: 
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 (3.5) 

and 2 1K K òk . 

Define the sampling error as: ( ) ( ) ( )ie t x t x t   , 1[ , )i it t t  . 

Firstly, introduce the scalar dynamics in the triggering rule as: 

 
1

2( ) ( ( )) ( ) ( ) ( ( ) ( ) ) ( )t t t s t s t L C e t s t         (3.6) 

where, let ( )   be a locally Lipschitz continuous function, 

define 1 { : 0 }MR       , and 0M  , 
1
2

2 { :0 }R s      . 

The dynamic event-triggering rule is defined as follows: 
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1
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1 inf{ : ( ) ( ) ( ) ( ( ))}i iit t t L C e t s t t F t        (3.7) 

where L  is a Lipschitz constant, (0,1)  , 
2
( )F   is defined 

as: 
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This triggering condition ensures that for 0t  : 

 
2

1
2( ) ( ) ( ) ( ( ))iL C e t s t t F t     (3.9) 

The following theorem provides the stability proof for the 
proposed scheme. 

Theorem 1: Consider the system (3.3) under the conditions 
of Assumption 1 and Assumption 2. Applying the controller 
composed of (3.4) and (3.5), along with the triggering rules 
(3.6) and (3.7), if the control gains satisfy: 
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 (3.10) 

Then the sliding surface will converge to the following 
domain: 
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 (3.11) 

Proof: By considering (3.3) and (3.4), differentiation of the 
sliding variable (3.2) yields: 
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 (3.12) 

where 11 2
1 1

6ˆ[ ] [ ; ]D D D e e R     . 

Introducing 0 0
i i

ie z x  , [ 1]ji i
j j ie z d   , 0

ie  represent the 

observation errors of the system states ix , and 1
ie  to represent 

the observation error of the non-matching disturbance id , we 

can obtain the estimation error of the observer as:  
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It follows from [18] that the system (3.13) is finite-time 
stable. Regardless of the system state ix , the observer 

estimation error j
ie  will converge to zero within a finite time. 

Therefore, the sliding variable (3.12) can be simplified to: 
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Step 1: Prove the convergence of the sliding variable to the 

domain (3.11). Let 2 ( ( ))( )
i

i

t
sign s t dt

t
t K    , equation (3.14) 

becomes: 
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Define 1 2( ), ([ )( ) ]Ttt t   , where 
1
2

1( ) | ( ) | ( ( ))t s t sign s t  , 

2( ) ( )t t  . Taking the derivative with respect to ( )t , we 

can get: 
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 (3.16) 

Introduce the following Lyapunov function for stability 
analysis of the system: 

 * 2 * 2
1( , ) ( ) 2 21

1 1
( ) ( )

2 2
KV V K KK K       (3.17) 

where: 
 ( ) ( ) ( )TV t P t    (3.18) 

The positive definite matrix P is defined as: 
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 (3.19) 

Due to the switching structure of the designed triggering 
mechanism, two cases are analyzed for the convergence of the 
closed-loop system trajectories to (3.11). 

Case 1: For the situation where 2 , consider the case 

where the sliding mode has not yet entered the sliding domain. 
( ( )) ( ( ))isign s t sign s t  and ( )is t  . The derivative of ( )V   is: 
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Given the existence of ( ) ( ) [ ( ) ( )]i i is t s t C x t x t    , we can 

get: 
 ( ) ( ) ( ) ( ) ( )is t C e t s t s t C e t     (3.21) 

According to equation (3.9), equation (3.21) can become: 

 1 2 1 1 1( ) ( ) ( )it t t         (3.22) 
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Define 21( ) [ ( )  ( ) ]Tt t t   , according to (3.9), and given 

the existence of M  , we have: 

 
1 1

( ) ( ) ( )
)

1

( ) (
T M

V t Q t t
t t

 



   （ ）  (3.23) 

where 2 * *
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matrix Q is: 
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To ensure that Q is positive definite, it must satisfy: 
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According to equations (3.18) and (3.23), the derivative of 
the Lyapunov function (3.17) is: 
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Where  0 1  , 1 1 1 1min( , , )l l    ò , 

maxmin ( )(1 ) / ( )Q P     . 

According to equation (3.26), if min( ) ( )t M Q    , then 

( , ) ( , )K KV V   , the sliding variable ( )s t  will converge 

within the domain 2
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2
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2
1 { ( ) }QMs     . 

The second scenario is when 2 , implying that the 

trajectory has already entered the sliding domain. We proceed 
with the analysis. The maximum deviation of the trajectory 

( )s t  within any time interval 1[ , )i it t t   is given by: 

 

1

2( )
( ) ( ) ( ) ( ) ( )

i

i i

s t
s t s t Cx t Cx t C e t

L


      (3.27) 

Therefore, the maximum boundary value of the sliding 
domain at this time is: 
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In conclusion, for all t, the sliding surface eventually 
converges within the domain (3.11), thus proving Theorem 1. 

Step 2: Prove the stability of the closed-loop system after 
the sliding surface reaches the sliding domain. Construct the 

Lyapunov function 
1 1 1
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its derivative, we can get: 
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It can be observed that when 1
1min 1( ) x s e    , 

1
0xV  . 

Therefore, it can be concluded that the error trajectory 1x  

converges to: 
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At this point, the proof is complete. 
Note 1: The control gains 1K  and 2K  are bounded. When 

( )s t  , 1 1 1(0)  2K K t l  , where 0 ft t  , this implies 

that 1( )K t  is bounded. Since 2 1K Kòk , this implies that 2K  

is also bounded. When ( )s t  , the control gains 1K  and 2K  

are decreasing. Therefore, there exist positive numbers 

11K K  and 22K K . 

 

IV. INTER-EVENT TIME ANALYSIS 

Let i+1i iT t t   be defined as the inter-event time. To avoid 

the occurrence of Zeno behavior, the inter-event time in 
event-triggered systems must have a positive lower bound, as 
stated in the following theorem: 

Theorem 2 Considering the system (3.3) and the controller 
(3.4), under the triggering condition (3.7), there exists a 
positive lower bound for the inter-event time between any two 
consecutive triggering sequences 

Proof: letting  1[ , ) : ( ) 0i it t t e t    , for all 1[ , ) \i it t t   , 

we can get: 

 1
1

2

1
1 2( ) L ( ) ( )i i

d
e t e t K C s t K C T

dt
     (4.1) 

Integrating both sides of the equation yields: 

 1

1

2
( )1 2( )

( ) ( 1)
L

ii
i i L t t

K s t K T
e t e

C
 


   (4.2) 
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sAccording to (3.30), it can be inferred that the maximum 
increase of the error at time t is given by 

1
2 2

min min mi
2

n
2max{ ( ) ( ) , ( ) ( )}iZ Q s tM L       . Combining 

(4.2), one has that: 

 12

1
2

( )1 ( )
( 1)

L
iiL t ti iK s t K T

Z e
C

 


   (4.3) 

Defining a function of iT :  

 1

1

2
1 2 ( )( )

( ) ( 1)
L

i ii i

i

L t t
K s t K T

F T e Z
C

 


    (4.4) 

It can be easily observed that for 0iT  , this function is 

monotonically increasing. Since (0) 0F Z   , there exist 

values 0r   such that ( ) 0F r  . Therefore, the solution to 

equation (4.3) is 0i rT   , and Theorem 2 is proved. 

V. SIMULATION 

MATLAB/Simulink software is utilized for simulation 
to demonstrate the effectiveness of the proposed method. The 
model parameters for the quadrotor are referenced from [17], 
and the parameter settings for the adaptive sliding mode 
attitude controller are shown in Table 1. 

Table 1. Parameters of controller 

The reference signals are selected as 

[0.1 cos( ),0.1 sin( ),0.1 sin( )]T
d t t t     . The initial states are 

set (0) [0,0.1,0.1]T  . The external disturbances are given by 

1 )0.05 (d sin t , 2 )0.05 (cosd t . The parameters of the 

observer are chosen as 1
0 10  , 2

0 5  , 1
1 10  , 2

1 3  , 1
2 1  , 

1 1L  , 2 1L  . The dynamic parameter design for the triggering 

rule as:
1
2( ) ( ) ( ) ( ( ) ( ) ) ( )t t s t s t L C e t s t       , and 

5M  , 5L  , 0.6  . 

 
Fig. 1. Comparison of attitude tracking 

 
Fig. 2. Tracking errors of the attitude angles 

 
Fig. 3. Control signals 

Fig. 1 presents a comparison of the tracking performance of 
the three attitude angles of a quadrotor between the proposed 
algorithm in this paper and the algorithm in [8]. In the 
presence of mismatched disturbances, the proposed approach 
demonstrates stable tracking of the three attitude angles, 
showing the significant robustness of the proposed algorithm. 
Fig. 2 illustrates the tracking errors of the three attitude 
angles, indicating that the control algorithm designed in this 
chapter achieves high attitude tracking accuracy. Fig. 3 
displays the control inputs for the quadrotor's attitude control. 
Under the dynamic event-triggering mechanism, the 
controller is updated 976 times, significantly reducing 
computational resource waste compared to the traditional 
fixed-period update of 12001 times, thereby conserving 
system resources. Fig.4 represents the event-triggered times, 
with a lower bound existing between consecutive updates of 

the controller. This implies that the controller's update 
frequency is finite, indicating the absence of Zeno behavior in 
the system.  

 
Fig. 4. Evolution of inter-event time 

 

VI. CONCLUSION 

This paper proposes an event-triggered adaptive 
super-twisting control method based on a disturbance 
observer, which effectively improves the robustness and 
performance of the system while optimizing resource 
utilization. The adaptive super-twisting control strategy based 
on the disturbance observer is employed to compensate for 
both matched and mismatched disturbances, enhancing the 
system's robustness and performance. Additionally, a 
dynamic event-triggering control strategy is introduced to 
optimize resource utilization. It allows for flexible 
determination of when to trigger the controller's update based 
on the actual state changes of the system, significantly 
reducing the number of control updates and conserving 
resources. 
 

Parameter   1i
  

1i
l  

i  
mi

K    ò 

Value {10,10,10}diag  6 2 0.05 0.8 0.8 0.1 
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