
1 www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-06, June 2024

Deep Reinforcement Learning-based DAG Task

Scheduling Algorithm for Cloud Computing

Jiaxin Su

Abstract—As the paradigm of cloud computing burgeons,

task scheduling emerges as a critical mechanism in enhancing

resource utilization and quality of service. However, scheduling

tasks modeled by Directed Acyclic Graphs (DAGs) poses

significant challenges due to their inherent parallelism and

dependency constraints. Deep reinforcement learning (DRL)

offers a promising approach to address these challenges, yet

existing approaches such as the Deep Deterministic Policy

Gradient (DDPG) algorithm are hindered by issues including

unstable Actor network training. This study introduces an

advanced DDPG-based scheduling algorithm tailored for the

unique complexities of DAG cloud computing task scheduling.

We fortified the Actor network by incorporating a supervised

learning approach to adjust its loss function, thereby stabilizing

training outcomes. Empirical analyses across several critical

metrics—task completion time, server energy consumption, and

standard deviation of resource utilization—demonstrate that

our refined model substantially outperforms traditional

scheduling methods and unmodified DRL algorithms. The

findings affirm that the enhanced DDPG algorithm not only

expedites scheduling effectiveness but also reduces energy

consumption while maintaining service quality, showcasing the

extensive potential and pragmatic value of applying DRL in

cloud computing task scheduling. Our improved approach is

poised to contribute a fresh perspective to future research and

application in DAG task scheduling.

Index Terms—DAG, DRL, DDPG, Cloud Computing, Task

Scheduling.

I. INTRODUCTION

With the rapid development of distributed computing,

task scheduling represented by directed acyclic graph (DAG)

has become a typical challenge in cloud computing. Different

from non-DAG tasks that usually contain linear independent

execution sequences, DAG tasks are characterized by

complex operations, multiple dependencies, and parallel

execution paths. These remarkable features inevitably lead to

a series of scheduling challenges in practical application

scenarios, such as coordinating data dependencies,

minimizing execution time, and optimizing resource

allocation
[1]

, which motivates this research.

Contemporary Scheduling Solutions Some of these

approaches focus on static offline batch jobs, which are

significantly deficient for dynamically changing workloads

in cloud environments. In contrast to offline methods, online

scheduling techniques usually employ heuristic algorithms

which are significantly less efficient when faced with a large

number of dynamically changing tasks. The main reason for

Manuscript received June 01, 2024
JiaXin Su, School of computer science and technology, Tiangong

University, Tianjin, China.

this is that these approaches suffer from significant

shortcomings when dealing with multiple simultaneous task

submissions, which are usually processed in a sequential

manner without taking into account the interconnectedness of

the tasks. In addition, the high degree of heterogeneity and

unpredictability inherent in real-world cloud tasks is often

overlooked
[2]

.

Therefore, our research introduces a Deep Reinforcement

Learning (DRL)-based task scheduling framework, an

approach that promises to revolutionize the dynamics of task

allocation. Reinforcement Learning (RL) is a component of

machine learning that enhances an agent's ability to derive

optimal policies in large and complex state interactions,

while DRL mitigates this dilemma by integrating deep

learning models to moderate the challenges posed by overly

large high-dimensional spaces
[3]

. We formulate online task

scheduling as a constrained dynamic optimization puzzle and

address it through a DDPG network designed to find optimal

task allocation schemes. The network is adept at learning

directly from empirical data without a priori knowledge and

can make informed scheduling decisions based on iteratively

received VM requests
[4]

. Specifically, the library of task and

VM information received by the scheduler is parsed into the

state of the agent, while the response time of the task is the

pivot of its action reward
[5]

.

Through this exploration, we fill a gap in contemporary

research by boldly breaking down the complexity of DAG

task scheduling and constructing a robust, adaptable

framework that not only withstands the unpredictable

changes in cloud computing operations, but also significantly

improves efficiency and effectiveness.

II. RELATED WORK

A. Deep Reinforcement Learning

Reinforcement Learning (RL) is an important branch in the

field of machine learning, which aims to perceive

information from the environment through an intelligent

body agent (Agent) and map a set of actions accordingly
[6]

.

Reinforcement learning aims to allow intelligent agents to

make decisions in the environment, with the goal of learning

through interactions in order to achieve specific goals or

maximize cumulative rewards
[7]

. Distinguished from

supervised and unsupervised learning, reinforcement

learning focuses on learning without explicit labeling. The

method is based on four elements: intelligences, states,

actions and rewards
[8]

, by performing actions in the

environment and receiving rewards or punishments. Through

this process, the intelligent body gradually learns how to

choose actions to optimize long-term gains
[9]

.

http://www.ijerm.com/

Deep Reinforcement Learning-based DAG Task Scheduling Algorithm for Cloud Computing

2 www.ijerm.com

The essence of reinforcement learning is to iteratively

solve the optimal policy using Bellman's equation in the

framework of Markov Decision Process (MDP)
[10,11]

. By

continuously updating the policy and the value function, the

reinforcement learning algorithm gradually approaches the

optimal solution, enabling the intelligence to make optimal

decisions in different states.

Deep Reinforcement Learning (DRL) is a machine

learning technique that integrates the perceptual capability of

deep learning and the decision-making capability of

reinforcement learning
[12]

. As shown in Figure 1 in DRL the

Agent is the central role, which decides the Action to be taken

by observing and analyzing the current State of the

Environment. For each action performed, the Environment

provides the Agent with a Reward or Penalty to evaluate the

effectiveness of the action taken. The goal of the intelligent

body is to learn the optimal action strategy through

continuous interaction with the environment, i.e., to choose

those actions that maximize the cumulative long-term reward.

This cyclic process continues, and by continuously

optimizing the experience gathered, the intelligent body

refines its understanding of the environment and its coping

strategies until it is able to make effective decisions in a

variety of states
[13]

.

evaluates the value of the state-action pairs under the current

policy. The Actor network outputs a deterministic policy,

which is the selection of an optimal action in each state, while

the Critic network evaluates the expected payoff of that

action
[17]

. The DDPG algorithm provides an effective

solution to the problem of reinforcement learning in

continuous action space by combining deep learning and

policy gradient methods. With the introduction of goal

networks, experience playback and noise exploration

strategies, the DDPG algorithm demonstrates excellent

performance in dealing with high-dimensional state spaces

and complex policy learning
[18]

. As the field of deep

reinforcement learning continues to evolve, DDPG plays an

important role in areas such as automation control, robotics

and game intelligence
[19,20]

.

Figure 2: DDPG Algorithm Architecture

III. SYSTEM MODEL

A. DAG Model

Figure 1: Deep Reinforcement Learning Architecture

B. Deep Deterministic Policy Gradient Algorithm

The Deep Deterministic Policy Gradient (DDPG)

In DAG task scenarios, efficient scheduling of DAG tasks

is essential to ensure high performance execution. As shown

in the DAG task structure, each subtask is represented by an

independent node, and the set of tasks is represented by
V {v ,v ,...,v } , and the interdependencies between

algorithm is a reinforcement learning algorithm proposed in

the context of combining deep learning and policy gradient
methods, and is particularly suitable for problems with

1 2 n

subtasks are represented by directed edges between nodes

E {e ,e ,...,e } , and since dependency data needs to be
1 2 n

continuous action spaces. DDPG was proposed by Lillicrap

et al
[14]

 in 2015, which introduces deep learning techniques in

the domain of policy gradients, which significantly improves

the ability to learn complex policies in high-dimensional state

spaces.

The design of the DDPG algorithm is based on the

Actor-Critic framework
[15]

, where the Actor network is

responsible for determining the optimal actions to take in a

given state, while the Critic network evaluates the value of

these actions. Unlike traditional Actor-Critic methods, the

DDPG algorithm utilizes a deep neural network to

approximate the Actor's strategy and the Critic's value

function, which allows the algorithm to handle

high-dimensional inputs that are difficult to deal with in

traditional methods
[16]

. The core idea of the DDPG algorithm,

shown in Figure 2, is the simultaneous use of two neural

networks: an Actor network, which determines the action to

be taken in a given state, and a Critic network, which

passed between each task node with dependency relationship,

the size of the dependent data between subtasks is

represented by the weights of these directed edges.

In the DAG task model, tasks that do not have any

antecedent task nodes are defined as entry task nodes, while

those that do not have successor task nodes are defined as exit

task nodes. To simplify the complexity of the model, this

study assumes that each DAG task process contains only one

entry task node as well as one exit task node. If more than one

entry or exit task node exists, a virtual pseudo-entry node or

pseudo-exit node is introduced into the model, and the

computational complexity of these pseudo-nodes and the

amount of data dependency on other subtasks are considered

to be zero.

In the simplified example of the DAG cloud task shown in

Figure 3, except for the entry task node identified as “Start”
and the exit task node identified as “Exit”, all other task

nodes have at least one parent or one child node, and some

http://www.ijerm.com/

3 www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-06, June 2024

i

i , j

i , j

i , j

task nodes may have at least one parent or one child node,

and some task nodes may have at least one parent or one child
job

i
 task

i ,1
,task

i ,2
,task

i ,3
,,task

i ,n  (3.1)

node. All other task nodes, except the “Start” entry task node task  mi , data ,cpu , mem ,level  (3.2)
and the “Exit” exit task node, have at least one parent or one

child, and some task nodes may have more than one parent

and more than one child. This dependency relationship

between tasks creates inherent priority constraints that ensure

sequential and correct scheduling, i.e., any child task can only

start execution after all its parents have successfully

completed and passed all dependent data.

i , j size size demand demand p

The server composition of a cloud data center is defined by

instruction processing capability, CPU and memory

resources, network transmission speed, and operational

power. The parameterization used by the server to support the

DAG task is represented as in Equation.3.3.

server
i
 mips

speed
,cpu

capacity
, ram

capacity
, net

speed
, power

work  (3.3)

Figure 3: DAG Task

B. Task scheduling Model

As shown in Figure 4, the cloud computing task scheduling

model for DAG tasks contains three key components:

user-defined DAG tasks, scheduling center, and cloud data

center. In the task scheduling system model, the user is

responsible for defining and submitting the DAG task and its

associated resource requirements; the scheduling center

evaluates the priority of the DAG task and completes the

resource allocation based on the requirements, and it is

responsible for deciding how to assign the task to the

available resources in the most efficient way; and the cloud

data center, which consists of a series of heterogeneous VM

resources, is responsible for executing the task and returning

the results to the scheduling center.

Figure 4: Task scheduling Model

A DAG task contains multiple subtasks, assuming that a

DAG task contains n subtasks, which can be expressed as

Equation 3.1. The attribute composition of subtasks mainly

contains the number of instructions, the data size, the

computational resource requirement, and the task priority.

These attributes are indispensable considerations in the task

scheduling process, according to which the scheduler needs

A cloud data center can be described as a set of n

heterogeneous servers serving prioritized tasks, each

configured with different processing capabilities, resource

ratios, and operating power.

C. Optimization Model

The algorithmic model optimization objective consists of

three parts, average DAG task completion time, standard

deviation of server resource utilization and server operation

power consumption.

1. Average completion time

Average time to completion (AFT) is one of the key

metrics to measure the performance of task scheduling

algorithms and is particularly important in cloud computing

resource scheduling. It refers to the average time for all

subtasks to complete their execution. Specifically, it is the

sum of the completion times of all subtasks divided by the

number of subtasks. For a DAG job, the predecessor subtasks

with which it is bound should have been executed before the

subtasks are executed, and the earliest idle time of the

subtasks on the server is shown in Equation 3.4. The runtime

of a task is the ratio of the number of instructions executed by

the task to the speed at which the server executes the

instructions, and the data transfer time is the ratio of the

amount of data for the task to the network bandwidth of the

server. The completion time of the predecessor tasks of the

task is shown in Equation 3.5, where pred indicates all the

predecessor tasks of the task, and finish time indicates the

completion time of the sub-task v. If there is no predecessor

task for the task, it is zero. Based on the above analysis, as

shown in Equation 3.6, the actual start time can be derived as

the earliest idle time and the completion time of the

predecessor tasks plus the transmission time of the sub-task v

The start time of subtask v is the ratio of the number of task

execution instructions to the server execution instruction

speed. The actual start time is the maximum value of the

earliest idle time and the completion time of the predecessor

task plus the transmission time in the server, and the actual

completion time of the task is the actual start time of the task

plus the actual execution time, so as to obtain the actual

completion time of the subtasks in the server, as shown in

Equation 3.7:

to prioritize tasks and assign them to the most suitable server

resource pools to optimize the system performance and

task runTime 
task

mi

servermipSpeed

, task transTime  task data

server netSpeed

(3.4)

i i

resource utilization. the DAG task information is represented

as shown in Equation 3.2:
predFT  max finishTimev  (3.5)

i , j
vk pred taski , j  k

http://www.ijerm.com/

Deep Reinforcement Learning-based DAG Task Scheduling Algorithm for Cloud Computing

4 www.ijerm.com

i i ,n

 i ram  i

i1 server
miSpeed

 startTimek
  max server freeTime , predFT

 tasktransTime  (3.6)
m POWER  taskRunTime

k  server
power

(3.13)

i , j k i , j i , j  k

k 1

finishTime
k
  startTime

k
  taskrunTime (3.7)

i , j i , j i , j

For a single job, the goal is to minimize the maximum

completion time of all subtasks at server {server}_k. Based

on the above conditions, the maximum completion time of

task job can be obtained as the completion time of export task

n. The finishTime is denoted as the completion time of the

nth subtask of the i task. the export task, at server k, as shown

in Equation 3.8:

D. Algorithm Model

Markov Decision Process (MDP) was introduced earlier as

a mathematical model to describe systems with stochasticity

and decision making. The Markov Decision Process consists

of several basic constituent elements: state space, action

space, and reward function. In this section, the MDP model is

developed based on the task scheduling system model as

follows:

maxFinishTime  finishTime
k
 (3.8)

1. State space design

For the state of job, for any moment t the system is able to

For the whole cloud computing platform, the goal is to

make the waiting time of all the tasks as short as possible, so

it is necessary to find a program that can make the average

completion time of all the tasks is the shortest, assuming that

there are n tasks, the average completion time of the task is

denoted as AFT, and the calculation is shown in Equation

3.9:

obtain information about all the ready subtasks in the set of

submitted tasks, and each subtask information can be

represented as task, where i represents the i task in the set of

submitted tasks and j represents the j subtask of task i. The

state of each subtask consists of the number of task

instructions, data size, occupied cpu resources, occupied

memory resources, network bandwidth speed and task

priority. The state of each subtask consists of the number of

AFT 
1 

N

maxFinishTime (3.9) task instructions, data size, occupied cpu resources, occupied

n i1
i

2. Standard deviation of resource utilization rates

In server clusters, resource load balancing is critical for

improving performance, reducing energy consumption and

optimizing resource utilization. In this paper, we use

Standard Deviation of Resource Utilization (SDRU) as a

metric, which measures the degree of dispersion in the

memory resources, network bandwidth speed and task

priority, and the state of each server consists of the speed of

the server executing instructions, the load of cpu resources,

the load of memory resources, the speed of the network

bandwidth and the operating power, and the state space is

shown in Equation 3.14:

 taskmiSize ,task dataSize ,task pLevel ,taskcpuDemand , i ,1 i ,1 i ,1 i ,1

distribution of server resource utilization, thus reflecting the 
task ramDemand ,...,task miSize ,task dataSize ,task pLevel ,

 (3.14)
overall load balancing. Assuming that there are n servers, and state   i ,1 i ,n i ,n i ,n 
the corresponding resource utilization of each server, the

average value is calculated based on the cpu resource

i taskcpu ,task ram ,..., servermipSpeed , servernetSpeed 
 i ,n i ,n i i 
 servercpuCapacity , serverramCapacity , server power ,... 

utilization and memory utilization, and the formula is as

follows Equation 3.10:

 i i i 
2. Action space design
Assuming that there are J servers, the action space is

x
cpu


1 n

n i1

server
cpu

, x 
1 n

n i1

server
ram

(3.10) composed of the set of numbers of these J servers. Therefore,

an action can be represented as assigning subtask j of task i to

The resource utilization standard deviation calculates the

difference between each server's resource utilization and the

server number k. The action space is represented by Equation

3.15:

average, calculated as follows Equation 3.11:

SDRU 


(3.11)

action
i , j ,k

 server
1
, server

2
,, server

k 
3. Reward function design

(3.15)

3. Server operating power consumption

As far as the cloud platform power consumption is

concerned, since the power of the servers in a cloud

computing system varies, the operational power consumption

generated by a single server is the product of the power and

the time spent executing tasks on server. Assuming that there

are m servers and n tasks are executed on the kth server,

According to the objective optimization function proposed

by Algorithm Model, the reward function consists of the

average task completion time AFT, the standard deviation of

the server's resource utilization SDRU, and the power

consumption of the cluster operation POWER, and the

reward function is as shown in Equation 3.16 by setting up

the different weighting system in order to optimize the

different indexes.

Equation 3.12 can be expressed as the sum of the ratio of the

number of instructions executed for all the tasks to the

execution speed of the server as shown in Equation 3.13. The

power consumption of the entire cluster is the sum of the

reward    AFT    SDRU    POWER

IV. METHOD

(3.16)

product of the power consumption of all servers and the

server execution time:
n task

mi

The efficiency of task scheduling is crucial in cloud

computing environments targeting DAG tasks. The Deep

Deterministic Policy Gradient (DDPG) based algorithm

taskRunTime
k   i

k

(3.12) proposed in this paper aims to allocate optimal server

1

n  i1
 

server  x  server  x  

 

http://www.ijerm.com/

5 www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-06, June 2024

t t t

t t t t 1

i i i1 i1



i i





N
i i i

N
a   s∣ 

n i
i i i i i

resources for DAG tasks through a deep reinforcement

learning approach. The following is the basic flow of task

scheduling based on the DDPG algorithm:

1. Initialization environment: define the simulation

environment, initialization includes DAG task parameters,

heterogeneous server parameters, etc. Before the simulation

starts, set the DDPG algorithm hyper-parameters, including

the learning rate, discount factor, noise parameter, soft update

factor, as well as the size of the empirical playback buffer for

Actor network to update in the direction of actions that are

likely to receive higher future rewards, thus providing an

effective strategy to improve the training process and

stability of the Actor network. By integrating such a strategy

into a task scheduling algorithm for cloud computing, we are

able to parametrically show the application of DDPG in real

complex systems. The detailed design of the cloud computing

task scheduling algorithm based on DDPG is shown in

Algorithm 1:

the learning process and the update frequency of the target

network.

2. defining task queue and initial state: based on the task

scheduling system model detailed in Subsection 4.1.2, a task

queue is created to receive user-submitted DAG tasks, and

the initial state of the cloud computing environment is

obtained, including the characteristics of the tasks and the

current load of the server.

3. environment interaction: generating actions based on

Actor online policy network, and facilitating intelligences to

explore unknown environments based on action exploration

strategy. Execute selected actions in the task scheduling

system, assign tasks to VMs and observe the response of the

environment, including the reward obtained and the next

state.

4. storing experience: storing experience tuples (current

state, action, reward, next state) into the experience playback

buffer. Sampling from experience playback buffer:

Randomly sample a batch of experience data from the

Algorithm 1: DDPG-Based Task Scheduling Algorithm

1: Initialize online Critic Q s, a∣ Q  and Actor networks

 s, a∣   with weights 
Q and   .

2: Initialize the Critic and Actor networks in the target


: Q



  Q
, 



  

3: Initializing task scheduling system tasks and server

parameters

4: Hyperparameters such as experience playback pool  ,

soft update factor  , reward discount


, randomness

noise in initialization Noise

5: for each episode do:

6: get initialization state s_1 from the environment

7: for each episode do:

8: get the task state and current server load from the

environment

9: pick an action by adding a   s∣    noise

experience playback buffer for network training.
5. Updating the network: the Critic online Q network

utilizes the actual rewards and the target Q network outputs to

compute the loss and update its parameters, while the Actor

noise to the actor network
10: execute at in the task scheduling system and

observe the reward value rt and the environment

11: stored in the experience pool (s , a , r , s)

online policy network adjusts the action selection by

updating its policy gradient based on the value assessment of
12: set y  r  Q s ,  s ∣

 ∣  Q
 

the Critic online Q network. In order to maintain the stable

learning of the algorithm, the parameters of the target

network are periodically modified for the online network

through a soft update mechanism, which maintains the

smoothness of the learning process.

In order to improve training stability, this paper proposes

supervised training methods to train Actor networks offline.

By filtering the training data whose reward is less than the

average reward of a batch of samples, they reflect the

13: update the Critic network based on critic loss:

L 
 1  y  Qs , a∣ Q 2

i

14: select 𝑟 less than the mean from 𝑁 data 𝑛

15: add a loss function to update the Actor network:

L 
1

(w(r)(a  (s∣ ))2  Q(s , a∣ Q))
n i

i i i i i

16: update the Actor network based on the gradient of

the actor:

potential for optimizing the performance of the system in the

current state. We add a new loss function to train the Actor
  J 

1  Q s, a∣ Q 
i



ssi ,a si  
si

network, the loss function is shown in Equation 4.1:

Loss 
1 wr a   s∣

 2

 Qs , a∣
Q 




(4.1)

17: update the target network:

 Q


Q  (1 ) Q


, 


   (1 ) 




18: end

19: end

In this loss function, wri  is a weighting function based

on the reward r , whose purpose is to adjust the impact of

each sample on the loss based on the size of the reward.

A. Datasets

V. EXPERIMENTS

Whereas  is the balance coefficient, Q s , a∣ Q  is the Q

value predicted by the Critic network for taking action a
i

in

state s
i
, which is used to regulate the action prediction error

and the expected reward estimated by the Actor network. By

adding this new loss function to the Actor training process, it

not only reduces the prediction error, but also guides the

In this paper, a method for randomly generating directed

acyclic graphs (DAGs) is proposed for modeling workflow

task scheduling of different sizes and complexities. With this

approach, DAGs with various characteristics can be flexibly

created, and thus task scheduling strategies can be evaluated

and optimized.

The number of randomly selected DAG nodes is set to

network

http://www.ijerm.com/

Deep Reinforcement Learning-based DAG Task Scheduling Algorithm for Cloud Computing

6 www.ijerm.com

range from 10 to 30, and the maximum out-degree of the

nodes varies from 1 to 5. Two parameters are also defined to

control the shape and regularity of the DAG, where \alpha

determines the depth of the DAG and \beta affects the

standard deviation of the distribution of the nodes at each

layer.

Finally, in order to evaluate different task scheduling

algorithms, this paper generates a large number of training

and test datasets using the methodology described above.

Separate training and test sets were created, where each set

contained 1000 DAGs of different sizes. the structure,

duration and resource requirements of these DAGs were

saved in NumPy array format for subsequent processing and

analysis.

(a) DAG of 10 subtask (b) DAG of 20 subtask

Figure 5: DAG Generation Tasks

B. Parameters

The neural network structure of the DDPG deep

reinforcement learning method proposed in this paper adopts

a 5-layer network structure, using Relu as the activation

function between the hidden layers and Sigmoid as the

activation function in the output layer, and the other

parameters in the network are shown in Table 1:

Table 1: Parameterization of the DDPG algorithm

 Parameter Value Meaning
lr_actor 0.0005 Actor learning rate

lr_critic 0.001 Critic learning rate

update_timestep 1000 Network update step

tau 0.01 Soft update frequency

batch_size 128 Batch size

epsilon 0.95 Exploration rate
gamma 0.99 Exploration rate decay

epsilon_min 0.1 Minimum exploration rate

 step 10000 Training step

C. Experiment Result

As shown in Figure. 6, the horizontal coordinate represents

the number of subtasks in the DAG task and the vertical

coordinate represents the average completion time of the

DAG task. The average task completion time of our proposed

supervised training STDDPG algorithm significantly

outperforms other scheduling algorithms. The traditional

DDPG algorithm performs second only to the STDDPG

algorithm in the experiments. Although the SJF algorithm is

able to reduce the waiting time of short jobs in some cases, it

does not perform well in the experiments. The Random

algorithm performs task scheduling based on random choices

and does not take into account the priority relationship of the

tasks, and this randomness leads to the lower scheduling

efficiency of the Random algorithm in the experiments and

the longer average task completion time. The RR scheduling

algorithm does not have a significant effect due to the use of

polling scheduling . In 10DAGs scenario STDDPG algorithm

reduces the average task completion time by 5.3% compared

to DDPG algorithm, 18.3% compared to Random algorithm,

6.5% compared to SJF algorithm and 16.4% compared to RR

algorithm.

Figure 6: Average completion time Analysis

As shown in Figure. 7, the horizontal coordinate indicates

the number of subtasks in the DAG task and the vertical

coordinate indicates the standard deviation of server resource

utilization. The experimental results indicate that the DDPG

algorithm performs second only to the STDDPG algorithm in

terms of standard deviation of resource utilization. The RR

algorithm performs the worst in terms of standard deviation

of resource utilization. The RR algorithm performs task

scheduling through the time-slice rotation strategy, which

ensures fairness in task scheduling but results in certain tasks

not being completed in time due to long waiting time, thus

affecting the overall utilization of resources. The STDDPG

algorithm proposed in this study reduces the standard

deviation of resource utilization by 7.4% compared to the

DDPG algorithm, 28.5% compared to the RR algorithm,

19.3% compared to the Random algorithm, and 10.7%

compared to the SJF algorithm for the scenario of 10DAGs,

and the combined analysis , the STDDPG scheduling

algorithm proposed in this study effectively improves the

resource utilization in D-task scenarios.

Figure 7 Standard deviation of resource utilization rate

Analysis

This experiment provides an in-depth evaluation of the

http://www.ijerm.com/

7 www.ijerm.com

International Journal of Engineering Research And Management (IJERM)

ISSN: 2349- 2058, Volume-11, Issue-06, June 2024

application of the STDDPG algorithm to a multi-objective

optimization problem. The core objective is to achieve high

efficiency in task scheduling and fairness in resource

utilization, i.e., to minimize the average task completion time

and to optimize the standard deviation of server resource

utilization. In order to achieve these two objectives in a

balanced way, this study designs and implements an

integrated reward function, which takes the weighted sum of

the average response time of the task and the standard

deviation of the resource utilization as the immediate reward

of the intelligences, where the weight of both objectives is set

to 0.5. The experimental environment is constructed based on

the DAG (Directed Acyclic Graph) task model, in which each

task consists of 10 sub-tasks, and all the tasks are

computational center. The experimental results are shown in

8. The STDDPG algorithm effectively controls the standard

deviation of resource utilization while minimizing the

average task completion time. Compared with the

single-objective optimization algorithm, the STDDPG

algorithm generally demonstrates significant advantages over

the traditional scheduling algorithm in the overall

experimental results. Compared to the DD algorithm where

the average task response time is reduced by 9.3% and the

standard deviation of resource utilization is reduced by 7.3%,

the DDPG algorithm shows a significant improvement in

both the reduction of average response time and the reduction

of standard deviation of resource utilization.

Figure 8 Standard deviation of resource

utilization rate Analysis

VI. CONCLUSION

In this paper, we present a novel supervised deep

reinforcement learning algorithm, dubbed Supervised

Training Deep Deterministic Policy Gradient (STDDPG).

We have constructed a task model based on Directed Acyclic

Graphs (DAG) and a scheduling system model, for which we

have formulated an objective optimization function. The

paper then redefines the state space, action space, and

rewards function, and enhances the agent's ability to explore

the environment through improved action exploration

strategies. Incorporating supervised training refines the Actor

network's loss function within a DDPG-based scheduling

algorithm, bolstering the network's learning capabilities in

complex and dynamic environments and increasing the

algorithm's flexibility and accuracy. The refined algorithm

achieves a balanced optimization of objectives, efficiently

harmonizing task average completion times with server

resource utilization while maintaining robustness.

This research delves deeply into the theoretical analysis

and modeling of cloud computing task scheduling and

empirically validates the effectiveness of the proposed

algorithm. The innovative outcomes discussed in this article

offer a fresh perspective and method for resolving task

scheduling challenges in cloud computing settings, holding

significant theoretical and practical significance for the

advancement and application of cloud computing

technologies.

REFERENCES

[1] Dong T, Xue F, Xiao C, et al. Workflow scheduling based on deep

reinforcement learning in the cloud environment[J]. Journal of

Ambient Intelligence and Humanized Computing, 2021, 12(12):

10823-10835.

[2] Wei Y, Pan L, Liu S, et al. DRL-scheduling: An intelligent QoS-aware

job scheduling framework for applications in clouds[J]. IEEE Access,

2018, 6: 55112-55125.

[3] Siddesha K, Jayaramaiah G V, Singh C. A novel deep reinforcement

learning scheme for task scheduling in cloud computing[J]. Cluster

computing, 2022, 25(6): 4171-4188.

[4] Wang T, Liu Z, Chen Y, et al. Load balancing task scheduling based on

genetic algorithm in cloud computing[C]//2014 IEEE 12th

international conference on dependable, autonomic and secure

computing. IEEE, 2014: 146-152.

[5] Awad A I, El-Hefnawy N A, Abdel_kader H M. Enhanced particle

swarm optimization for task scheduling in cloud computing

environments[J]. Procedia Computer Science, 2015, 65: 920-929.

[6] Li K, Xu G, Zhao G, et al. Cloud task scheduling based on load

balancing ant colony optimization[C]//2011 sixth annual ChinaGrid

conference. IEEE, 2011: 3-9.

[7] Gan G, Huang T, Gao S. Genetic simulated annealing algorithm for

task scheduling based on cloud computing environment[C]//2010

International Conference on Intelligent Computing and Integrated

Systems. IEEE, 2010: 60-63.

[8] Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with

double q-learning[C]//Proceedings of the AAAI conference on

artificial intelligence. 2016, 30(1).

[9] Cheng M, Li J, Nazarian S. DRL-Cloud: Deep Reinforcement

Learning-Based Resource Provisioning and Task Scheduling for Cloud

Service Providers[J].

[10] François-Lavet V, Henderson P, Islam R, et al. An introduction to deep

reinforcement learning[J]. Foundations and Trends® in Machine

Learning, 2018, 11(3-4): 219-354.François-Lavet V, Henderson P,

Islam R, et al. An introduction to deep reinforcement learning[J].

Foundations and Trends® in Machine Learning, 2018, 11(3-4):

219-354.
[11] Rittinghouse J W, Ransome J F. Cloud computing: implementation,

management, and security[M]. CRC press, 2017.

[12] Attaran M, Woods J. Cloud computing technology: improving small

business performance using the Internet[J]. Journal of Small Business
& Entrepreneurship, 2019, 31(6): 495-519.

[13] Srivastava P, Khan R. A review paper on cloud computing[J].

International Journal of Advanced Research in Computer Science and

Software Engineering, 2018, 8(6): 17-20.

[14] Silver D, Lever G, Heess N, et al. Deterministic policy gradient

algorithms[C]//International conference on machine learning. Pmlr,

2014: 387-395.

[15] Duan J, Guan Y, Li S E, et al. Distributional soft actor-critic:
Off-policy reinforcement learning for addressing value estimation

errors[J]. IEEE transactions on neural networks and learning systems,

2021, 33(11): 6584-6598.

[16] Ru J, Keung J. An empirical investigation on the simulation of priority

and shortest-job-first scheduling for cloud-based software

systems[C]//2013 22nd Australian Software Engineering Conference.

IEEE, 2013: 78-87.

[17] Zhou G, Tian W, Buyya R. Deep reinforcement learning-based

methods for resource scheduling in cloud computing: A review and

future directions[J]. arXiv preprint arXiv:2105.04086, 2021.

[18] Peng Z, Lin J, Cui D, et al. A multi-objective trade-off framework for

cloud resource scheduling based on the deep Q-network algorithm[J].

Cluster Computing, 2020, 23: 2753-2767.

[19] Cheng Z, Min M, Liwang M, et al. Multiagent DDPG-based joint task

partitioning and power control in fog computing networks[J]. IEEE

Internet of Things Journal, 2021, 9(1): 104-116.

[20] Zheng T, Wan J, Zhang J, et al. Deep reinforcement learning-based

workload scheduling for edge computing[J]. Journal of Cloud

Computing, 2022, 11(1): 3.

http://www.ijerm.com/

	Jiaxin Su
	predFT 
	finishTimek

