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Abstract—As the paradigm of cloud computing burgeons, 

task scheduling emerges as a critical mechanism in enhancing 

resource utilization and quality of service. However, scheduling 

tasks modeled by Directed Acyclic Graphs (DAGs) poses 

significant challenges due to their inherent parallelism and 

dependency constraints. Deep reinforcement learning (DRL) 

offers a promising approach to address these challenges, yet 

existing approaches such as the Deep Deterministic Policy 

Gradient (DDPG) algorithm are hindered by issues including 

unstable Actor network training. This study introduces an 

advanced DDPG-based scheduling algorithm tailored for the 

unique complexities of DAG cloud computing task scheduling. 

We fortified the Actor network by incorporating a supervised 

learning approach to adjust its loss function, thereby stabilizing 

training outcomes. Empirical analyses across several critical 

metrics—task completion time, server energy consumption, and 

standard deviation of resource utilization—demonstrate that 

our refined model substantially outperforms traditional 

scheduling methods and unmodified DRL algorithms. The 

findings affirm that the enhanced DDPG algorithm not only 

expedites scheduling effectiveness but also reduces energy 

consumption while maintaining service quality, showcasing the 

extensive potential and pragmatic value of applying DRL in 

cloud computing task scheduling. Our improved approach is 

poised to contribute a fresh perspective to future research and 

application in DAG task scheduling. 

 

Index Terms—DAG, DRL, DDPG, Cloud Computing, Task 

Scheduling. 

 

 

I. INTRODUCTION 

With the rapid development of distributed computing, 

task scheduling represented by directed acyclic graph (DAG) 

has become a typical challenge in cloud computing. Different 

from non-DAG tasks that usually contain linear independent 

execution sequences, DAG tasks are characterized by 

complex operations, multiple dependencies, and parallel 

execution paths. These remarkable features inevitably lead to 

a series of scheduling challenges in practical application 

scenarios, such as coordinating data dependencies, 

minimizing execution time, and optimizing resource 

allocation
[1]

, which motivates this research. 

Contemporary Scheduling Solutions Some of these 

approaches focus on static offline batch jobs, which are 

significantly deficient for dynamically changing workloads 

in cloud environments. In contrast to offline methods, online 

scheduling techniques usually employ heuristic algorithms 

which are significantly less efficient when faced with a large 

number of dynamically changing tasks. The main reason for 
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this is that these approaches suffer from significant 

shortcomings when dealing with multiple simultaneous task 

submissions, which are usually processed in a sequential 

manner without taking into account the interconnectedness of 

the tasks. In addition, the high degree of heterogeneity and 

unpredictability inherent in real-world cloud tasks is often 

overlooked
[2]

. 

Therefore, our research introduces a Deep Reinforcement 

Learning (DRL)-based task scheduling framework, an 

approach that promises to revolutionize the dynamics of task 

allocation. Reinforcement Learning (RL) is a component of 

machine learning that enhances an agent's ability to derive 

optimal policies in large and complex state interactions, 

while DRL mitigates this dilemma by integrating deep 

learning models to moderate the challenges posed by overly 

large high-dimensional spaces
[3]

. We formulate online task 

scheduling as a constrained dynamic optimization puzzle and 

address it through a DDPG network designed to find optimal 

task allocation schemes. The network is adept at learning 

directly from empirical data without a priori knowledge and 

can make informed scheduling decisions based on iteratively 

received VM requests
[4]

. Specifically, the library of task and 

VM information received by the scheduler is parsed into the 

state of the agent, while the response time of the task is the 

pivot of its action reward
[5]

. 

Through this exploration, we fill a gap in contemporary 

research by boldly breaking down the complexity of DAG 

task scheduling and constructing a robust, adaptable 

framework that not only withstands the unpredictable 

changes in cloud computing operations, but also significantly 

improves efficiency and effectiveness. 

 

 

II. RELATED WORK 
 

A. Deep Reinforcement Learning 

Reinforcement Learning (RL) is an important branch in the 

field of machine learning, which aims to perceive 

information from the environment through an intelligent 

body agent (Agent) and map a set of actions accordingly
[6]

. 

Reinforcement learning aims to allow intelligent agents to 

make decisions in the environment, with the goal of learning 

through interactions in order to achieve specific goals or 

maximize cumulative rewards
[7]

. Distinguished from 

supervised and unsupervised learning, reinforcement 

learning focuses on learning without explicit labeling. The 

method is based on four elements: intelligences, states, 

actions and rewards
[8]

, by performing actions in the 

environment and receiving rewards or punishments. Through 

this process, the intelligent body gradually learns how to 

choose actions to optimize long-term gains
[9]

. 
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The essence of reinforcement learning is to iteratively 

solve the optimal policy using Bellman's equation in the 

framework of Markov Decision Process (MDP)
[10,11]

. By 

continuously updating the policy and the value function, the 

reinforcement learning algorithm gradually approaches the 

optimal solution, enabling the intelligence to make optimal 

decisions in different states. 

Deep Reinforcement Learning (DRL) is a machine 

learning technique that integrates the perceptual capability of 

deep learning and the decision-making capability of 

reinforcement learning
[12]

. As shown in Figure 1 in DRL the 

Agent is the central role, which decides the Action to be taken 

by observing and analyzing the current State of the 

Environment. For each action performed, the Environment 

provides the Agent with a Reward or Penalty to evaluate the 

effectiveness of the action taken. The goal of the intelligent 

body is to learn the optimal action strategy through 

continuous interaction with the environment, i.e., to choose 

those actions that maximize the cumulative long-term reward. 

This cyclic process continues, and by continuously 

optimizing the experience gathered, the intelligent body 

refines its understanding of the environment and its coping 

strategies until it is able to make effective decisions in a 

variety of states
[13]

. 

evaluates the value of the state-action pairs under the current 

policy. The Actor network outputs a deterministic policy, 

which is the selection of an optimal action in each state, while 

the Critic network evaluates the expected payoff of that 

action
[17]

. The DDPG algorithm provides an effective 

solution to the problem of reinforcement learning in 

continuous action space by combining deep learning and 

policy gradient methods. With the introduction of goal 

networks, experience playback and noise exploration 

strategies, the DDPG algorithm demonstrates excellent 

performance in dealing with high-dimensional state spaces 

and complex policy learning
[18]

. As the field of deep 

reinforcement learning continues to evolve, DDPG plays an 

important role in areas such as automation control, robotics 

and game intelligence
[19,20]

. 

 

Figure 2: DDPG Algorithm Architecture 
 

 

 

III. SYSTEM MODEL 
 

A. DAG Model 

Figure 1: Deep Reinforcement Learning Architecture 

 

B. Deep Deterministic Policy Gradient Algorithm 

The  Deep  Deterministic  Policy  Gradient  (DDPG) 

In DAG task scenarios, efficient scheduling of DAG tasks 

is essential to ensure high performance execution. As shown 

in the DAG task structure, each subtask is represented by an 

independent node, and the set of tasks is represented by 
V {v ,v ,...,v } ,  and  the  interdependencies  between 

algorithm is a reinforcement learning algorithm proposed in 

the context of combining deep learning and policy gradient 
methods, and is particularly suitable for problems with 

1  2 n 

subtasks are represented by directed edges between nodes 

E {e ,e ,...,e } , and since dependency data needs to be 
1  2 n 

continuous action spaces. DDPG was proposed by Lillicrap 

et al
[14]

 in 2015, which introduces deep learning techniques in 

the domain of policy gradients, which significantly improves 

the ability to learn complex policies in high-dimensional state 

spaces. 

The design of the DDPG algorithm is based on the 

Actor-Critic framework
[15]

, where the Actor network is 

responsible for determining the optimal actions to take in a 

given state, while the Critic network evaluates the value of 

these actions. Unlike traditional Actor-Critic methods, the 

DDPG algorithm utilizes a deep neural network to 

approximate the Actor's strategy and the Critic's value 

function,  which allows the algorithm to handle 

high-dimensional inputs that are difficult to deal with in 

traditional methods
[16]

. The core idea of the DDPG algorithm, 

shown in Figure 2, is the simultaneous use of two neural 

networks: an Actor network, which determines the action to 

be taken in a given state, and a Critic network, which 

passed between each task node with dependency relationship, 

the size of the dependent data between subtasks is 

represented by the weights of these directed edges. 

In the DAG task model, tasks that do not have any 

antecedent task nodes are defined as entry task nodes, while 

those that do not have successor task nodes are defined as exit 

task nodes. To simplify the complexity of the model, this 

study assumes that each DAG task process contains only one 

entry task node as well as one exit task node. If more than one 

entry or exit task node exists, a virtual pseudo-entry node or 

pseudo-exit node is introduced into the model, and the 

computational complexity of these pseudo-nodes and the 

amount of data dependency on other subtasks are considered 

to be zero. 

In the simplified example of the DAG cloud task shown in 

Figure 3, except for the entry task node identified as “Start” 
and the exit task node identified as “Exit”, all other task 

nodes have at least one parent or one child node, and some 
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i 

i , j 

i , j 

i , j 

task nodes may have at least one parent or one child node, 

and some task nodes may have at least one parent or one child 
job

i 
 task

i ,1 
,task

i ,2 
,task

i ,3 
,,task

i ,n  (3.1) 

node. All other task nodes, except the “Start” entry task node task  mi , data ,cpu , mem ,level  (3.2) 
and the “Exit” exit task node, have at least one parent or one 

child, and some task nodes may have more than one parent 

and more than one child. This dependency relationship 

between tasks creates inherent priority constraints that ensure 

sequential and correct scheduling, i.e., any child task can only 

start execution after all its parents have successfully 

completed and passed all dependent data. 

i , j size size demand demand p 

 

The server composition of a cloud data center is defined by 

instruction processing capability, CPU and memory 

resources, network transmission speed, and operational 

power. The parameterization used by the server to support the 

DAG task is represented as in Equation.3.3. 

server
i 
 mips

speed 
,cpu

capacity 
, ram

capacity 
, net

speed 
, power

work  (3.3) 

 

 

 

 

 

 

 

 

 

Figure 3: DAG Task 

B. Task scheduling Model 

As shown in Figure 4, the cloud computing task scheduling 

model for DAG tasks contains three key components: 

user-defined DAG tasks, scheduling center, and cloud data 

center. In the task scheduling system model, the user is 

responsible for defining and submitting the DAG task and its 

associated resource requirements; the scheduling center 

evaluates the priority of the DAG task and completes the 

resource allocation based on the requirements, and it is 

responsible for deciding how to assign the task to the 

available resources in the most efficient way; and the cloud 

data center, which consists of a series of heterogeneous VM 

resources, is responsible for executing the task and returning 

the results to the scheduling center. 

 

 
Figure 4: Task scheduling Model 

A DAG task contains multiple subtasks, assuming that a 

DAG task contains n subtasks, which can be expressed as 

Equation 3.1. The attribute composition of subtasks mainly 

contains the number of instructions, the data size, the 

computational resource requirement, and the task priority. 

These attributes are indispensable considerations in the task 

scheduling process, according to which the scheduler needs 

A cloud data center can be described as a set of n 

heterogeneous servers serving prioritized tasks, each 

configured with different processing capabilities, resource 

ratios, and operating power. 

C. Optimization Model 

The algorithmic model optimization objective consists of 

three parts, average DAG task completion time, standard 

deviation of server resource utilization and server operation 

power consumption. 

1. Average completion time 

Average time to completion (AFT) is one of the key 

metrics to measure the performance of task scheduling 

algorithms and is particularly important in cloud computing 

resource scheduling. It refers to the average time for all 

subtasks to complete their execution. Specifically, it is the 

sum of the completion times of all subtasks divided by the 

number of subtasks. For a DAG job, the predecessor subtasks 

with which it is bound should have been executed before the 

subtasks are executed, and the earliest idle time of the 

subtasks on the server is shown in Equation 3.4. The runtime 

of a task is the ratio of the number of instructions executed by 

the task to the speed at which the server executes the 

instructions, and the data transfer time is the ratio of the 

amount of data for the task to the network bandwidth of the 

server. The completion time of the predecessor tasks of the 

task is shown in Equation 3.5, where pred indicates all the 

predecessor tasks of the task, and finish time indicates the 

completion time of the sub-task v. If there is no predecessor 

task for the task, it is zero. Based on the above analysis, as 

shown in Equation 3.6, the actual start time can be derived as 

the earliest idle time and the completion time of the 

predecessor tasks plus the transmission time of the sub-task v 

The start time of subtask v is the ratio of the number of task 

execution instructions to the server execution instruction 

speed. The actual start time is the maximum value of the 

earliest idle time and the completion time of the predecessor 

task plus the transmission time in the server, and the actual 

completion time of the task is the actual start time of the task 

plus the actual execution time, so as to obtain the actual 

completion time of the subtasks in the server, as shown in 

Equation 3.7: 

to prioritize tasks and assign them to the most suitable server 

resource pools to optimize the system performance and 

 

task runTime 
task 

mi
 

servermipSpeed 

 

, task transTime  task data 

server netSpeed 

(3.4) 

i i 

resource utilization. the DAG task information is represented 

as shown in Equation 3.2: 
predFT   max finishTimev  (3.5) 

i , j 
vk pred taski , j  k 
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i i ,n 

 i ram  i 

i1 server
miSpeed

 

 startTimek
  max server freeTime , predFT 

 

 tasktransTime  (3.6)  
m POWER  taskRunTime

k  server 
power

 
(3.13) 

i , j k i , j i , j  k 

k 1 

finishTime
k
  startTime

k
  taskrunTime (3.7) 

i , j i , j i , j 

 

For a single job, the goal is to minimize the maximum 

completion time of all subtasks at server {server}_k. Based 

on the above conditions, the maximum completion time of 

task job can be obtained as the completion time of export task 

n. The finishTime is denoted as the completion time of the 

nth subtask of the i task. the export task, at server k, as shown 

in Equation 3.8: 

D. Algorithm Model 

Markov Decision Process (MDP) was introduced earlier as 

a mathematical model to describe systems with stochasticity 

and decision making. The Markov Decision Process consists 

of several basic constituent elements: state space, action 

space, and reward function. In this section, the MDP model is 

developed based on the task scheduling system model as 

follows: 

maxFinishTime  finishTime
k
 (3.8) 

1. State space design 

For the state of job, for any moment t the system is able to 

For the whole cloud computing platform, the goal is to 

make the waiting time of all the tasks as short as possible, so 

it is necessary to find a program that can make the average 

completion time of all the tasks is the shortest, assuming that 

there are n tasks, the average completion time of the task is 

denoted as AFT, and the calculation is shown in Equation 

3.9: 

obtain information about all the ready subtasks in the set of 

submitted tasks, and each subtask information can be 

represented as task, where i represents the i task in the set of 

submitted tasks and j represents the j subtask of task i. The 

state of each subtask consists of the number of task 

instructions, data size, occupied cpu resources, occupied 

memory resources, network bandwidth speed and task 

priority. The state of each subtask consists of the number of 

AFT  
1 

N 

maxFinishTime (3.9) task instructions, data size, occupied cpu resources, occupied 

n i1 
i
 

 

2. Standard deviation of resource utilization rates 

In server clusters, resource load balancing is critical for 

improving performance, reducing energy consumption and 

optimizing resource utilization. In this paper, we use 

Standard Deviation of Resource Utilization (SDRU) as a 

metric, which measures the degree of dispersion in the 

memory resources, network bandwidth speed and task 

priority, and the state of each server consists of the speed of 

the server executing instructions, the load of cpu resources, 

the load of memory resources, the speed of the network 

bandwidth and the operating power, and the state space is 

shown in Equation 3.14: 

 taskmiSize ,task dataSize ,task pLevel ,taskcpuDemand ,  i ,1 i ,1 i ,1 i ,1 

distribution of server resource utilization, thus reflecting the 
task ramDemand ,...,task miSize ,task dataSize ,task pLevel ,

 (3.14) 
overall load balancing. Assuming that there are n servers, and state   i ,1 i ,n i ,n i ,n 
the corresponding resource utilization of each server, the 

average value is calculated based on the cpu resource 

i taskcpu ,task ram ,..., servermipSpeed , servernetSpeed 
 i ,n i ,n i i 
 servercpuCapacity , serverramCapacity , server power ,... 

utilization and memory utilization, and the formula is as 

follows Equation 3.10: 

 i i i 
2. Action space design 
Assuming that there are J servers, the action space is 

 

x
cpu 
 

1 n 

 

n i1 

server
cpu 

, x  
1 n 

 

n i1 

server
ram

 
(3.10) composed of the set of numbers of these J servers. Therefore, 

an action can be represented as assigning subtask j of task i to 

The resource utilization standard deviation calculates the 

difference between each server's resource utilization and the 

server number k. The action space is represented by Equation 

3.15: 

average, calculated as follows Equation 3.11: 

 

SDRU 


(3.11) 

action
i , j ,k 

 server
1 
, server

2 
,, server

k 
3. Reward function design 

(3.15) 

 

3. Server operating power consumption 

As far as the cloud platform power consumption is 

concerned, since the power of the servers in a cloud 

computing system varies, the operational power consumption 

generated by a single server is the product of the power and 

the time spent executing tasks on server. Assuming that there 

are m servers and n tasks are executed on the kth server, 

According to the objective optimization function proposed 

by Algorithm Model, the reward function consists of the 

average task completion time AFT, the standard deviation of 

the server's resource utilization SDRU, and the power 

consumption of the cluster operation POWER, and the 

reward function is as shown in Equation 3.16 by setting up 

the different weighting system in order to optimize the 

different indexes. 

Equation 3.12 can be expressed as the sum of the ratio of the 

number of instructions executed for all the tasks to the 

execution speed of the server as shown in Equation 3.13. The 

power consumption of the entire cluster is the sum of the 

reward    AFT    SDRU    POWER 

 

IV. METHOD 

(3.16) 

product of the power consumption of all servers and the 

server execution time: 
n task 

mi
 

The efficiency of task scheduling is crucial in cloud 

computing environments targeting DAG tasks. The Deep 

Deterministic Policy Gradient (DDPG) based algorithm 

taskRunTime
k    i 

 

k 

(3.12) proposed in this paper aims to allocate optimal server 

1 

n  i1 
  

server  x  server  x    
 

  
 

   
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t t t 

t  t  t  t 1 

i i i1 i1 



i i 





N 
i i i 

N 
a   s∣ 

n i 
i i i i i 

resources for DAG tasks through a deep reinforcement 

learning approach. The following is the basic flow of task 

scheduling based on the DDPG algorithm: 

1. Initialization environment: define the simulation 

environment, initialization includes DAG task parameters, 

heterogeneous server parameters, etc. Before the simulation 

starts, set the DDPG algorithm hyper-parameters, including 

the learning rate, discount factor, noise parameter, soft update 

factor, as well as the size of the empirical playback buffer for 

Actor network to update in the direction of actions that are 

likely to receive higher future rewards, thus providing an 

effective strategy to improve the training process and 

stability of the Actor network. By integrating such a strategy 

into a task scheduling algorithm for cloud computing, we are 

able to parametrically show the application of DDPG in real 

complex systems. The detailed design of the cloud computing 

task scheduling algorithm based on DDPG is shown in 

Algorithm 1: 

the learning process and the update frequency of the target   

network. 

2. defining task queue and initial state: based on the task 

scheduling system model detailed in Subsection 4.1.2, a task 

queue is created to receive user-submitted DAG tasks, and 

the initial state of the cloud computing environment is 

obtained, including the characteristics of the tasks and the 

current load of the server. 

3. environment interaction: generating actions based on 

Actor online policy network, and facilitating intelligences to 

explore unknown environments based on action exploration 

strategy. Execute selected actions in the task scheduling 

system, assign tasks to VMs and observe the response of the 

environment, including the reward obtained and the next 

state. 

4. storing experience: storing experience tuples (current 

state, action, reward, next state) into the experience playback 

buffer. Sampling from experience playback buffer: 

Randomly sample a batch of experience data from the 

Algorithm 1: DDPG-Based Task Scheduling Algorithm 

1: Initialize online Critic Q s, a∣ Q  and Actor networks 

 s, a∣   with weights  
Q and   . 

2: Initialize the Critic and Actor networks in the target 

 
: Q

 

  Q 
, 

 

  

3: Initializing task scheduling system tasks and server 

parameters 

4: Hyperparameters such as experience playback pool  , 

soft update factor  , reward discount 
 

, randomness 

noise in initialization Noise 

5: for each episode do: 

6: get initialization state s_1 from the environment 

7: for each episode do: 

8:  get the task state and current server load from the 

environment 

9: pick an action by adding a   s∣    noise 

experience playback buffer for network training. 
5. Updating the network: the Critic online Q network 

utilizes the actual rewards and the target Q network outputs to 

compute the loss and update its parameters, while the Actor 

noise to the actor network 
10:  execute at in the task scheduling system and 

observe the reward value rt and the environment 

11: stored in the experience pool (s , a , r , s ) 

online policy network adjusts the action selection by 

updating its policy gradient based on the value assessment of 
12: set y  r  Q s ,  s ∣ 

 ∣  Q
 

the Critic online Q network. In order to maintain the stable 

learning of the algorithm, the parameters of the target 

network are periodically modified for the online network 

through a soft update mechanism, which maintains the 

smoothness of the learning process. 

In order to improve training stability, this paper proposes 

supervised training methods to train Actor networks offline. 

By filtering the training data whose reward is less than the 

average reward of a batch of samples, they reflect the 

13: update the Critic network based on critic loss: 

L  
 1  y  Qs , a∣ Q 2 

i 

14: select 𝑟 less than the mean from 𝑁 data 𝑛 

15: add a loss function to update the Actor network: 

L  
1 

(w(r )(a  (s∣  ))2  Q(s , a∣ Q )) 
n i 

i i i i  i 

 

16:  update the Actor network based on the gradient of 

the actor: 

potential for optimizing the performance of the system in the 

current state. We add a new loss function to train the Actor 
  J  

1  Q s, a∣ Q 
i 



ssi ,a si   
si 

network, the loss function is shown in Equation 4.1: 

 

Loss  
1 wr a   s∣ 

 2 

 Qs , a∣ 
Q 




(4.1) 

17: update the target network: 

 Q
 

Q  (1  ) Q
 

, 
 

   (1  ) 




18:  end 

19: end 
 

In this loss function, wri  is a weighting function based 

on the reward r , whose purpose is to adjust the impact of 

each sample on the loss based on the size of the reward. 

 

 
A. Datasets 

 

V. EXPERIMENTS 

Whereas  is the balance coefficient, Q s , a∣ Q  is the Q 

value predicted by the Critic network for taking action a
i 

in 

state s
i 
, which is used to regulate the action prediction error 

and the expected reward estimated by the Actor network. By 

adding this new loss function to the Actor training process, it 

not only reduces the prediction error, but also guides the 

In this paper, a method for randomly generating directed 

acyclic graphs (DAGs) is proposed for modeling workflow 

task scheduling of different sizes and complexities. With this 

approach, DAGs with various characteristics can be flexibly 

created, and thus task scheduling strategies can be evaluated 

and optimized. 

The number of randomly selected DAG nodes is set to 

network 
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range from 10 to 30, and the maximum out-degree of the 

nodes varies from 1 to 5. Two parameters are also defined to 

control the shape and regularity of the DAG, where \alpha 

determines the depth of the DAG and \beta affects the 

standard deviation of the distribution of the nodes at each 

layer. 

Finally, in order to evaluate different task scheduling 

algorithms, this paper generates a large number of training 

and test datasets using the methodology described above. 

Separate training and test sets were created, where each set 

contained 1000 DAGs of different sizes. the structure, 

duration and resource requirements of these DAGs were 

saved in NumPy array format for subsequent processing and 

analysis. 

 
(a) DAG of 10 subtask (b) DAG of 20 subtask 

Figure 5: DAG Generation Tasks 

 

B. Parameters 

The neural network structure of the DDPG deep 

reinforcement learning method proposed in this paper adopts 

a 5-layer network structure, using Relu as the activation 

function between the hidden layers and Sigmoid as the 

activation function in the output layer, and the other 

parameters in the network are shown in Table 1: 

Table 1: Parameterization of the DDPG algorithm 
 

 Parameter Value Meaning  
lr_actor 0.0005 Actor learning rate 

lr_critic 0.001   Critic learning rate 

update_timestep  1000  Network update step 

tau  0.01 Soft update frequency 

batch_size 128 Batch size 

epsilon 0.95 Exploration rate 
gamma 0.99 Exploration rate decay 

epsilon_min 0.1 Minimum exploration rate 

 step 10000 Training step  

 

C. Experiment Result 

As shown in Figure. 6, the horizontal coordinate represents 

the number of subtasks in the DAG task and the vertical 

coordinate represents the average completion time of the 

DAG task. The average task completion time of our proposed 

supervised training STDDPG algorithm significantly 

outperforms other scheduling algorithms. The traditional 

DDPG algorithm performs second only to the STDDPG 

algorithm in the experiments. Although the SJF algorithm is 

able to reduce the waiting time of short jobs in some cases, it 

does not perform well in the experiments. The Random 

algorithm performs task scheduling based on random choices 

and does not take into account the priority relationship of the 

tasks, and this randomness leads to the lower scheduling 

efficiency of the Random algorithm in the experiments and 

the longer average task completion time. The RR scheduling 

algorithm does not have a significant effect due to the use of 

polling scheduling . In 10DAGs scenario STDDPG algorithm 

reduces the average task completion time by 5.3% compared 

to DDPG algorithm, 18.3% compared to Random algorithm, 

6.5% compared to SJF algorithm and 16.4% compared to RR 

algorithm. 
 

Figure 6: Average completion time Analysis 

 

As shown in Figure. 7, the horizontal coordinate indicates 

the number of subtasks in the DAG task and the vertical 

coordinate indicates the standard deviation of server resource 

utilization. The experimental results indicate that the DDPG 

algorithm performs second only to the STDDPG algorithm in 

terms of standard deviation of resource utilization. The RR 

algorithm performs the worst in terms of standard deviation 

of resource utilization. The RR algorithm performs task 

scheduling through the time-slice rotation strategy, which 

ensures fairness in task scheduling but results in certain tasks 

not being completed in time due to long waiting time, thus 

affecting the overall utilization of resources. The STDDPG 

algorithm proposed in this study reduces the standard 

deviation of resource utilization by 7.4% compared to the 

DDPG algorithm, 28.5% compared to the RR algorithm, 

19.3% compared to the Random algorithm, and 10.7% 

compared to the SJF algorithm for the scenario of 10DAGs, 

and the combined analysis , the STDDPG scheduling 

algorithm proposed in this study effectively improves the 

resource utilization in D-task scenarios. 
 

Figure 7 Standard deviation of resource utilization rate 

Analysis 

 

This experiment provides an in-depth evaluation of the 
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application of the STDDPG algorithm to a multi-objective 

optimization problem. The core objective is to achieve high 

efficiency in task scheduling and fairness in resource 

utilization, i.e., to minimize the average task completion time 

and to optimize the standard deviation of server resource 

utilization. In order to achieve these two objectives in a 

balanced way, this study designs and implements an 

integrated reward function, which takes the weighted sum of 

the average response time of the task and the standard 

deviation of the resource utilization as the immediate reward 

of the intelligences, where the weight of both objectives is set 

to 0.5. The experimental environment is constructed based on 

the DAG (Directed Acyclic Graph) task model, in which each 

task consists of 10 sub-tasks, and all the tasks are 

computational center. The experimental results are shown in 

8. The STDDPG algorithm effectively controls the standard 

deviation of resource utilization while minimizing the 

average task completion time. Compared with the 

single-objective optimization algorithm, the STDDPG 

algorithm generally demonstrates significant advantages over 

the traditional scheduling algorithm in the overall 

experimental results. Compared to the DD algorithm where 

the average task response time is reduced by 9.3% and the 

standard deviation of resource utilization is reduced by 7.3%, 

the DDPG algorithm shows a significant improvement in 

both the reduction of average response time and the reduction 

of standard deviation of resource utilization. 
 

 

Figure 8 Standard deviation of resource 

utilization rate Analysis 

 

VI. CONCLUSION 

In this paper, we present a novel supervised deep 

reinforcement learning algorithm, dubbed Supervised 

Training Deep Deterministic Policy Gradient (STDDPG). 

We have constructed a task model based on Directed Acyclic 

Graphs (DAG) and a scheduling system model, for which we 

have formulated an objective optimization function. The 

paper then redefines the state space, action space, and 

rewards function, and enhances the agent's ability to explore 

the environment through improved action exploration 

strategies. Incorporating supervised training refines the Actor 

network's loss function within a DDPG-based scheduling 

algorithm, bolstering the network's learning capabilities in 

complex and dynamic environments and increasing the 

algorithm's flexibility and accuracy. The refined algorithm 

achieves a balanced optimization of objectives, efficiently 

harmonizing task average completion times with server 

resource utilization while maintaining robustness. 

This research delves deeply into the theoretical analysis 

and modeling of cloud computing task scheduling and 

empirically validates the effectiveness of the proposed 

algorithm. The innovative outcomes discussed in this article 

offer a fresh perspective and method for resolving task 

scheduling challenges in cloud computing settings, holding 

significant theoretical and practical significance for the 

advancement and application of cloud computing 

technologies. 
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