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 
Abstract— The Mamloo Dam ecosystem is under constant threat 

of environmental and anthropogenic stressors owing to its 

location not far from Jackson, the largest city in Mississippi. 

While the biological particles in the suspended particulate 

matter (SPM) including detritus and phytoplankton can be 

helpful for oyster survival and growth, non-algal suspended silts 

and clays can negatively affect these suspension feeding animals. 

This can lead to death by hypoxia/anoxia, to poor health. 

Oysters are also subjected to additional stress as a result of 

bio-availability of the contaminants associated with SPM. 

Runoff from adjacent watersheds and dredging activities 

increase SPM in the water column. Remote sensing is useful in 

mapping the spatio-temporal distribution of SPM. The primary 

objective of this research is to develop remote sensing algorithms 

for mapping SPM with a focus on non-algal patriciate (NAP) 

using Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite imagery captured in 2015. Water samples and 

ancillary data were collected from 12 locations within the dam. 

Semi-analytical algorithms is developed for generating NAP 

maps using the MODIS satellite imagery and field data. The 

potential impact of this endeavor will be significant as it informs 

water managers, the fishery industry, and other stakeholders on 

the current status of SPM 

 
Index Terms— Remote Sensing, Suspended Particulate 

Matter 

I. INTRODUCTION 

Suspended sediments reduces the transmission of solar 

radiation that shrinks photosynthesis in submerged aquatic 

vegetation and near-bottom phytoplankton [19]. Diminished 

photosynthesis means reduction in the size of aquatic 

vegetation and phytoplankton. The aquatic vegetation and 

phytoplankton play a vital role in the food chain of the aquatic 

ecosystem as they are the energy producers in the aquatic 

environment [19], [20]. 

 

Suspended sediments also have direct effect on the health and 

life of aquatic animals. According to Neil (2006), suspended 

clay-sized particles rapidly filled the intestinal tract of 

daphniids eventually leading to starvation. 

 

Suspended sediment also brings toxic substances into lakes, 

rivers, estuaries, coastal systems, and oceans (Michael et. al 

2015). These contaminants affect the population of aquatic 

animal with short term and long term effects, in which the 

latter is often not well studied (Michael et. al 2015).  

 

The rate and magnitude of suspended sediments can be 

affected by factors such as changes in land use, anthropogenic 

activities, and climate change. The suspended sediments are 

often transported to coastal bodies by revers joining them. 
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A. Measuring Suspended Sediments. 

Various parameters may be used for describing the 

concentration and characteristics of suspended sediments 

according to whether mass or optical properties are of interest 

and whether particulate matter is sorted into 

organic/inorganic fractions or not (“total”) [2]. The SPM 

distribution varies in different coastal areas and over a large 

spatiotemporal domain, hence making the SPM monitoring 

unprofitable by using traditional field methods, which can 

provide accurate measurements only at a very small 

spatiotemporal scale [11].  

 

Remote sensing has become a valuable alternative to in situ 

measurements [22]. Primarily using data acquired in the red 

and near-infrared (NIR) spectral regions of the 

electromagnetic spectrum, where SPM usually dominates the 

seawater spectral signature[13], [22]. In particular, the 

wavelength associated to the maximum in remote sensing 

reflectance increases from green to red up to NIR wavelengths 

with increasing SPM concentration (SPMC) [13]. 

 

According to [13] on the study on Gironde estuary, remote 

sensing reflectance grows between 400 and 700 nm for 

moderately high SPM values (35–250 g/m3), while Rrs tends 

to saturate at these wavelengths for extremely turbid waters 

(SPMC higher than 250 g/m3) but still considerably increases 

in the spectral NIR region. 

 

Many satellite radiometers, capable of acquiring information 

in the visible and NIR spectral 

regions, have been exploited so far for such a kind of 

application. Among them, MODIS is the one operational at a 

global scale with a good trade-off between spatial and 

temporal resolution. There are many satellite radiometers 

capable of acquiring visible and NIR spectral regions such as 

MODIS with its on-board Earth Observing System (EOS) 

Terra (since 2000) and Aqua (since 2002) with two spectral 

bands in the red (band 1, 620–670 nm) and NIR band 2, 

841–876 nm) regions at a spatial resolution of 250 m, 

acquired twice per day, almost all over the world [11]. Several 

authors have used MODIS single band algorithms as well as 

the combination of bands for retrieving SPMC in different 

geographical areas characterized by different SPM features 

[11], [3]. 

 

B. Algorithm 

Algorithms for quantification of SPM from water-leaving 

reflectance fall roughly into one of three families: single band, 

band ratio or multispectral [25]. These algorithms are 

described in the following sub-sections.  

 
a) Single Band Algorithms 
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For low and moderate reflectances, it is easy to detect SPM as 

there is a linear relationship between SPM and reflectance at 

any given wavelength (Althuis and Shimwell, 1995). At 

higher reflectances this relationship becomes non-linear and 

the reflectance is usually considered to approach 

asymptotically a maximal “saturation” value [13] where an 

increase in SPM concentration no longer affects reflectance 

[2]. Many algorithms have been developed to estimate SPM 

from reflectance at a single wavelength involving a linear, low 

reflectance, regime and a monotonic but non-linear high 

reflectance regime, although various functional forms have 

been suggested for the latter including logarithmic [3].  

 

The performance of such single band algorithms is generally 

best for low to moderate reflectances as optimal wavelength 

will depend on concentration and fixed wavelength 

algorithms will typically be limited to a certain range of 

concentrations [6]. Their accuracy depends on the validity of 

the underlying assumptions, particularly that total backscatter 

is proportional to SPM concentration and that space-time 

variability of non-particulate absorption can be neglected as 

the use of red or near infrared bands is preferred so that 

non-particulate absorption arises essentially from pure water 

absorption ([4]. Alternatively, if sufficient wavelengths of 

data are available, an adaptive algorithm could be envisaged 

using the basic one-band algorithm but with the retrieval 

wavelength being chosen differently for each input 

reflectance spectrum [5],[6]. 

 

An interesting variant on these algorithms is the use of 

algorithms based on the difference between two bands, 

generally red and near infrared (Ruddick et. al., 2008). These 

algorithms have similar properties to the single band 

algorithms but combine the SPM retrieval with a full aerosol 

correction (Stumpf and Pennock, 1989 as cited in Ruddick et. 

al., 2008) or a residual correction for aerosols after 

atmospheric correction [23]. 

 

The appropriateness of single band algorithms for SPM 

estimation means that SPM mapping can be made not just 

with dedicated ocean color sensors such as MODIS or 

MERIS but also with a very wide range of optical remote 

sensors, including SPOT, LANDSAT, ASTER, AVHRR, 

SEVIRI, etc. [17], [24]. 

 

b) Band Ratio Algorithms 

Another alternative to single band algorithms is two-band 

ratio algorithms for SPM estimation [13]. One band 

algorithms are highly sensitive to backscatter and hence are 

subject to uncertainties if the mass-specific backscatter 

coefficient has high natural variability (Ruddick et. al., 2008). 

In contrast, band ratio algorithms can be designed to be less 

sensitive to this natural variability since spectrally flat 

backscatter effects largely cancel when a ratio is taken 

(Ruddick et. al., 2008) and it is less sensitive to illumination 

conditions [12]. Band ratio algorithms may however be 

sensitive to the natural variability of sediment absorption 

properties since the use of a reflectance ratio shifts the 

relevant physics from backscattering properties to absorption 

properties (Moore et al., 1999 cited in Ruddick et. al., 2008). 

 

c) Multispectral Algorithms 

With availability of more dedicated ocean color sensors, 

many more bands of data are available that could improve 

algorithm performance, if the information is reliable (Ruddick 

et. al., 2008). The mathematical methods used in multispectral 

algorithms are quite diverse (Ruddick et. al., 2008). However, 

this family of algorithms is generally based on a forward 

model defining reflectance as function of inherent optical 

properties, including particulate backscatter and absorption, 

and an inversion procedure to find the model reflectance 

spectrum that best fits the measured reflectance (Doerffer and 

Fischer, 1994 cited in Ruddick et. al., 2008). The IOP set 

corresponding to this best-fitting model reflectance spectrum 

is then related to SPM concentration.  

 

One operational example of a multispectral SPM algorithm is 

the standard case 2 water algorithm for MERIS, which uses a 

forward model based on radiative transfer simulations and a 

neural network inversion procedure (Doerffer and Schiller, 

1997 cited in Ruddick et. al., 2008). 

 

One major advantage of the multispectral algorithms is the 

opportunity of automatically adapting to a varying mixture of 

algal and non-algal particles and thus offering greater 

generality (Ruddick et. al., 2008). In other words, the analysis 

of multispectral data can provide an estimate of phytoplankton 

absorption and hence of the contribution of algal particles to 

total particulate backscatter (Ruddick et. al., 2008). It is no 

longer necessary to assume, as in the one-band approach, 

constant SPM-specific particulate backscatter. Moreover, the 

consistency between the measured reflectance spectrum and 

the best-fit modelled can provide indications on the quality of 

the water-leaving reflectance data and on the uncertainty of 

the retrieved SPM (Ruddick et. al., 2008). However, Ruddick 

et. al. (2008) points out that such algorithms are still subject to 

uncertainties relating to conversion from optical properties to 

mass concentration. 

 

d) Towards Global Algorithms 

Even though, the proposed algorithms perform well for the 

specific region where they were calibrated, they lack 

consistent accuracy over different geographic regions[16]. 

Some efforts have been made in the past years to develop a 

more general algorithm valid for a wide range of geographical 

and geophysical settings as well as SPM concentrations 

[11][18]. Nechad et. al proposed a semi-analytical single band 

algorithm for SPMC retrieving, for different sensors and 

wavelengths, calibrated using in situ data (SPM range: from 

~1 to ~110 g/m
3
) from the Southern North Sea, finding an 

error of about 30% and 40% in calibration and validation 

respectively [22]. More recently, Han tested different 

algorithms for retrieving SPMC on a wide range of 

concentrations (from 0.15 to 2626 g/m
3
) and for various 

coastal environments dominated by river discharge, 

resuspension or phytoplankton bloom in Europe, French 

Guiana, North Canada, Vietnam, and China. Among the 

algorithms tested, the one proposed by Nechad et. Al resulted 

the best, assuming that the model parameters were adapted 

using the in situ measurements [22]. 

  

These preliminary studies confirmed the uncertainties of such 

algorithms if applied to different SPMC ranges or geophysical 

characteristics, suggesting the need of further analyses for a 

better accuracy assessment [11]. Another source of 
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uncertainty for these algorithms concerns the implemented 

atmospheric correction procedures [11], Ruddick et. al., 

2008). Even if several atmospheric correction algorithms 

have been proposed for turbid coastal waters, their 

performance changes on the basis of the analyzed location 

and range of SPMC [11]. Moreover, the SPMC values and 

variations are usually unknown for those areas where no 

previous studies are done that makes it difficult to understand 

the significance of an absolute SPMC value [11]. The same 

difficulty, considering the SPM variability in the 

spatiotemporal domain, can occur also in the same study area 

[11].  To explain this variation in the same study [11] gave the 

example - a SPMC of 50 g/m
3
 in an area normally 

characterized by high SPMC values (e.g., estuarine or coastal 

area under the influence of very turbid rivers, etc.) could have 

a low specific impact on the local environment. Instead, the 

same SPMC value, if registered in areas normally 

characterized by lower SPM concentrations, might have 

stronger effects and lead to serious environmental risks [11]. 

 

C. Validation 

The primary approach to SPM product validation is by 

comparing the data value for a satellite pixel with an in situ 

measurement from a location within that pixel and acquired 

almost simultaneously (in coastal waters, within 1 hour 

according to the recommendations of the MERIS Validation 

Team) (Ruddick et. al., [9]. An example of such a comparison 

is shown in Fig. 1. Differences between in situ and satellite 

measurements are typically many tens of per cent. Analysis of 

these differences is a challenging scientific exercise because 

of the large number of sources of uncertainty both on the 

satellite-side (SPM algorithm including variability of 

mass-specific properties, water-leaving reflectance input 

including atmospheric correction uncertainties, etc.) and on 

the measurement side (space-time mismatch with satellite 

pixel, mixing of sample, rinsing/weighing of filters, etc.) [8]. 

The lack of simultaneous in situ data is a serious shortcoming 

[7], [1]. 

 

 
Fig. 1. Validation of TSM derived from the MODIS 678nm 

band using algorithm (1) against simultaneous in situ 

measurements in Southern North Sea waters. [Points 

generally lie within 30% of the 1-1 line for a range of 

concentrations from 5 to 100 mg/l], Ruddick 

SPM algorithm validation using spectroradiometers is also 

important and removes at least some sources of difference 

(atmospheric correction) and improves the space-time match 

of the two datasets [15], [21]. 

 

Depending on the needs, it may be more relevant to validate at 

the level of multitemporal products such as monthly or 

climatological averages (Ruddick et. al., 2008). Such an 

approach enables much more in situ data to be used. It can be 

challenging to understand and trace the causes of satellite/in 

situ measurement differences because of the asynchronicity of 

data, even though it is appropriate for establishing the fitness 

for purpose of such multitemporal products [14] 

 

Although not generally considered as validation, in situ 

measurements of mass-specific inherent optical properties 

and study of their natural variability (Astoreca et al., 2006; 

Babin et al., 2003a; Babin et al., 2003b cited in Ruddick et. 

al., 2008), provides important information on related product 

uncertainty (Ruddick et. al., 2008). 

 

D. Quality Control 

In addition to a posteriori validation analysis, methods are 

developimmg for automatic quality control of satellite data 

products (Ruddick et. al., 2008). Processing flags indicating 

warning conditions relating to atmospheric correction such as 

negative water-leaving reflectances or out-of-bound aerosol 

products are a standard feature of a functional ocean color 

processing chains (Robinson et al., 2003 cited in Ruddick et. 

al., 2008). Multispectral inversion algorithms also allow 

(partial) assessment of product uncertainty by calculating the 

range of SPM values that could correspond to a reasonable 

spectral fit between the satellite measurement and the 

modelled reflectance that would result from the SPM 

algorithm output (Ruddick et. al., 2008). This product 

uncertainty can be output in map form along with the product 

itself as similar to those generated for chlorophyll products 

(Peters et al., 2005 cited in Ruddick et. al., 2008). 

II. MATERIALS AND METHODS 

A. Study Site 

Mamloo Dam, is a dam in the Central Alborz mountain range 

of northern Iran near to the Mount Damavand. It is located 35 

kilometres west of Tehran and 49 kilometres southwest of 

Mount Damavand. 

 

B. Field Data 

Field data was collected from the dam on 8/28/2015 and 

8/27/2016 for all the 12 sampling sites (Fig. 2). Systematic 

sampling is used to select the sites. The following data was 

collected.  

 Water sample  

 Radiometer reflectance measurements 

 Backscattering and florescence measurement 

 Secchi depth measurement 

 dam Depth  
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Fig. 2. Google Earth Imagery of Mamloo Dam and the sample 

sites 

C. Data Processing and Lab Procedures 

The collected samples are filtered and processed to obtain the 

following: 

 SPM absorption 

 SPM concentration 

 SPM backscattering 

 Chlorophyll a absorption 

 Phycocyanin absorption 

 Spectrophotometer measurement of absorption 

 

D. Algorithm Development 

The algorithm is developed using semi-analytical approach. 

Out of the 12 sampling sites, 8 were used for algorithm 

development and the 4 sites were used for validation. The 

validation sites were identified by simple random sampling. 

To develop SPM algorithm focusing on NAP, the Rrs is 

computed and subtracted systematically from the combination 

of components containing the absorption of water, chl a, 

NAP, and CDOM and backscattering by water, Chl a, and 

SPM using the following equation [10].  

 

Rrs=0.54(f/Q)(bb/ (a+ bb))    (1) 

 

Where 0.54 accounts for the Fresnel reflectivity at the sea 

surface. The proportionality constant (f/Q) values of 0.0922 

was used. To obtain the Rrs of NAP, first Rrs without NAP 

was calculated. Then, this Rrs without NAP is subtracted from 

the total Rrs from MODIS to obtain the NAP Rrs. The 

satellite Rrs from MOODISMODIS is atmospherically 

corrected. To come up with the correct wavelength, single 

band and band ratio methods were used. Using R2, Root 

Mean Squared Error (RMSE) and liner and polynomial 

Regression , among the tested, the best algorithm is selected.  

III. RESUTS 

The NAP values were obtained by reducing Chl-a form SPM. 

Then NAP is used to get the algorithm. Some calculations 

were done to find the best algorithm such as single band linear 

relationship and ratio of the bands. 

 

A) Single Band Linear Relationship 

The slop of bands of MODIS in visible wavelengths 412, 443, 

488, 531, 547, and 667 nm  were compared. Then, the slop of 

all of them is observed by comparing it to the slop of NAP and 

identified Rrs 547 as a suitable wavelength for direct linear 

relationship. Then, additional coefficients were added to 

come up with the following algorithm:  

NAP = Rrs 547 * 303 – 3.38         (2)                                                    

 
Rrs at 547nm is multiplied by 100 to adjust close to 0 values 

to have over 1. However, the R2 was very low at 0.43. The fig. 

3vshows the low relationship. 

 
Fig. 3. Single-band linear Rrs at 547nm 

 

B) Band Ratio 

We compared the slop of bands of MODIS in visible 

wavelengths 412, 443, 488, 531, 547, and 667 nm. After 

testing all other ratios of bands, we found out that the ratio of 

547/531 yielded a higher R2 value of 0.53 as shown in the Fig. 

4. 

 
Fig. 4. A linear regression for measured NAP and band ratio 

of total Rrs at 547nm and 531nm 

 

To improve the reliability of the algorithm and the R2 value, 

simulated Rrs from backscattering and absorption is 

calculated using equation (1). To get Rrs(λ)(NAP) and come 
up with semi-analytical algorithm, the following procedures 

were followed: 

 

 Obtain bb of water without SPM 

 bb of water is obtained from Smith and Baker (1981) 

Then the bb of water is used without adding bb of SPM as 

most of the backscattering comes from NAP. As the objective 

is to obtain Rrs without NAP 

Obtain absorption without SPM 

Then absorption of water is obtained from Mueller et. al. 

(2003) 

1. The absorption of CDOM is calculated by 

extrapolating using slop and absorption of CDOM at 

440nm (calculated using the average between 

434nm – 446nm absorption values).  

2. Thus, absorption (NAP=0) is obtained by summing 

absorption of water, and CDOM, Chl-a and 

Phycocyanin. 

  

 Obtaining Rrs(NAP) 

1. By using Equation 1: (Rrs(λ) = 0.54 (f/Q) * 
bb/(a+bb)) , Rrs(λ)(NAP=0) is calculated.  
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2. Finally, by subtracting Rrs(λ)(NAP=0) from Satellite 
Rrs, Rrs(λ)(NAP) is obtained for both Rrs 531nm 

and 547nm.  

 

 Apply band ratio method 

1. RrsNAP at 547nm is divided by RrsNAP at 531nm to 

get the ratio  

2. Compare it with measured NAP in scatter plot  

3. Obtained R2 value of 0.52 with linear regression that 

is slightly less than R2 obtained using total Rrs as 

shown in Fig. 4. With polynomial regression 0.54 R2 

is obtained as shown in the Fig. 5.  

4. The Root Mean Squared Error (RMSE) is 1.04 

 
Fig. 5. A linear regression for measured NAP and band ratio 

of total Rrs(NAP) at 547nm and 531nm 

 

 
Fig. 6. A polynomial regression for measured NAP and band 

ratio of total Rrs(NAP) at 547nm and 531nm 

 

Thus, NAP concentration can be obtained by getting Rrs of 

NAP using the above steps and by calculating using the 

following equation: 

 

  (3)       

   (4) 

 

C) Rrs using Absorbance                                                                                                                 

In the above single band and band ratio procedures, 

absorption coefficient is used that is calculated using specific 

absorption coefficient at each wavelength. In this case 

however, only the absorption is used to get the Rrs without 

NAP. An identical R2 of 0.52 and RMSE of 1.04 is found.  

 
Fig. 7.  A linear curve for measured NAP and band ratio of 

Rrs(NAP) at 547nm and 531nm calculated using Absorbance. 

 

Thus, NAP concentration can be obtained by getting Rrs of 

NAP using the above steps and by calculating using the 

following equation: 

 

      (5)     

 

D) Validation        

The final algorithms (equation 4 and 5) were validated using 

four sampling sites. The measured and the estimated NAP 

concentration is compared. The result of equation 4 was very 

good with the R2 value of 0.93. The RMSE was also very 

good at 0.72. The Fig. 8 shows the relationship between the 

measured and estimated NAP concentration. 

 
Fig. 8. Linear regression for measured NAP and estimated 

NAP using equation 4 

 

While testing the polynomial equation (4), a less accurate R2 

value of 0.90 is obtained. However, the RMSE (0.63) is better 

than the value obtained from equation 3 (Fig. 9). 

Consequently, equation 4 is the best equation because of its 

lower RMSE. 

 

 
Fig. 9. Linear regression for measured NAP and estimated 

NAP using equation 5. 
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IV. DISCUSSION 

a. Usefulness of Algorithms Developed from Satellite 

Data 

 Satellite remote sensing saves both time and money as 

compared to airborne remote sensing as the data is freely 

available such as MODIS. MODIS a dedicated ocean color 

satellite (Ruddick et. al., 2008), even though it is also used for 

other purposes. MODIS is operational at a global scale with a 

good trade-off between spatial and temporal resolution. There 

are many satellite radiometers capable of acquiring visible 

and NIR spectral regions such as MODIS with its on-board 

Earth Observing System (EOS) Terra (since 2000) and Aqua 

(since 2002) with two spectral bands in the red (band 1, 

620–670 nm) and NIR band 2, 841–876 nm) regions at a 

spatial resolution of 250 m, acquired twice per day, almost all 

over the world [11]. Several authors have used MODIS single 

band algorithms as well as the combination of bands for 

retrieving SPMC in different geographical areas 

characterized by different SPM features [11]. The use of 

MODIS will make it easy to create future data using the 

developed algorithm and procedure. 

 

b. Assessment of the Developed Algorithms 

Considering that Mamloo Dam is shallow and susceptible to 

particulate re-suspension due to human activity and the Pearl 

River is expected to have high SPMC. This reduces the 

performance of single band and band ratio algorithms as 

pointed out by Ruddick et. al. (2008). Even though, it is 

suggested to alternatively use near infrared bands for high 

concentrations, the atmospheric correction is not applied in 

the MODIS satellite data used for the algorithm development. 

Thus, our test of single band algorithm was concentrated in 

the visible region. The Multispectral algorithms are not used 

in this study due to time constraints.  

 

Consequently, the focus was given to band-ratio algorithm 

development that performs well in both low and high 

concentration [13], after subtracting optically active 

constituents, that are not relevant in this case. However, we 

could not test the ratio between visible around 550 nm with 

near infrared bands as the near infra-red bands were not 

readily available in our project. When tested, band ratio 

algorithms gave a better result compared with single band 

algorithm. The band ratio of 547 to 531 was selected as it 

gave better result as compared to all other band ratios.  

CONCLUSION 

To sum up, SPM specifically NAP poses a serious threat to 

the quality of the Mamloo Dam. This is because NAPs contain 

pollutants and clay particles that can cause serious health 

problems to the aquatic life. Algal particulates also can cause 

a serious danger but their difference in nature and impact as 

compared to NAP, laid the foundation for focusing on NAP.  

 

Band-ratio algorithm, after removing the influences of other 

IOPs, gave a good result. Better result could have been 

obtained if band ratio between visible region (around 550nm) 

and near infrared region was used. The ratio between Rrs 

(NAP) at 547nm and Rrs (NAP) at 531nm gave a good result 

with strong correlation (up to R2=0.93) when validating the 

result. 

 

Procedurally, Rrs calculated using absorbance values directly 

coming from spectrophotometer gave almost identical result 

when compared with Rrs values calculate using absorption 

that is obtained using specific absorption coefficients. This 

finding reduces the time to develop algorithms.  

 

The R2 value obtained using a linear regression between total 

Rrs and measured NAP (0.53) is slightly higher than the R2 

value between simulated NAP Rrs and measured NAP (0.52). 

However, relaying on the total Rrs will not guarantee good 

correlation in different seasons and locations. Most 

importantly, comparing NAP Rrs and measured NAP, two 

equations are tested, linear and polynomial. The polynomial 

equation (4) showed a better R2 of 0.54 as compared 0.52 R2 

for the linear equation (3). However, to choose the best 

algorithm, the RMSE is important. The measured NAP 

correlated with estimated NAP, both gave a high R2 of 0.93 

and 0.90 for equation 3 (linear) and 4 (polynomial) 

respectively. However, when looking at the RMSE there is a 

noticeable difference in favor of equation 4 (polynomial) that 

makes it the best equation. The RMSE for equation 4 is as low 

as 0.63 as compared with 0.72 for equation 3 (linear).  
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