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 
Abstract— k nearest neighbor join(kNN Join) refers to finding 

the k nearest neighbor vectors in another data set R for each 

object in the data set S by using the nearest neighbor formula 

and the distance calculation formula between vectors in two 

data sets.kNN Join has a wide range of applications, so it has 

received attention.However, as a combination of k nearest 

neighbor join queries and join calculations, processing kNN 

joins of high dimensional data is quite time consuming.To 

handle larger data sets, the Hadoop and Spark frameworks have 

been the tool of choice for parallel and distributed computing in 

recent years.In this paper, we present the vertical decomposition 

data for processing kNN connections using Spark.We propose to 

first approximate the vector piecewise aggregatio and the 

symbol aggregation approximation SAX, then decompose the 

vector vertically to satisfy the distributed operation, calculate 

the distance between different vectors in each partition, and 

then merge the partitions to meet the conditions. Calculate the 

vector and finally find the true distance between the vectors.The 

specific process is described in the implementation section of the 

text. The experimental results show that the proposed method 

improves the computational speed under the premise of ensuring 

the accuracy of the experimental results. 

 
Index Terms—kNN Join, Hadoop, Spark, symbolic 

aggregation, vertical partition 

 

I. INTRODUCTION 

 kNN Join or its variant operations have been broader 
application prospects and application value, including friend 
recommendation[1], pattern recognition[2], clustering[3], 
image similarity matching[4], outlier detection[5], spatial 
database[6] and other related fields. kNN Join is an 
asymmetric join operation that returns each of the points in 
the relationship R with the k nearest points in the other 
relationship S. However, most traditional algorithms use 
spatial indexes such as B+ trees[7], R-trees[8] or z-order 
curves[9] to improve the performance of kNN connections, 
but for high-dimensional data sets of large amounts of data, 
these methods can be very time consuming. 
For such data-intensive similarity calculations, the 
MapReduce framework[10] has become the primary choice 
for big data processing. Recently, some scholars have 
proposed parallel kNN connection algorithms using 
MapReduce, such as H-BNLJ, H-BRJ[11] and PGBJ[12]. 
Since PGBJ can filter non-similar kNN data in advance, 
PGBJ technology is better than H-BNLJ and H-BRJ in 
performance. However, as the data set dimension increases 
and the amount of data increases, its computational efficiency 
is greatly reduced. Nowadays, the similarity calculation of 
high-dimensional vectors also has the SAX method[13], 
which is very suitable for processing large-scale data sets. 
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Spark[14] is also a big data processing framework developed 
in recent years. It is a reference for MapReduce distributed 
big data processing, and it is optimized by the memory 
framework to make it have stronger data processing 
capabilities. In this paper, we propose an efficient parallel 
algorithm based on the Spark platform to improve the parallel 
computing efficiency of kNN Join and reduce the running 
time. We first need to normalize each dimension vector in the 
original R and S data sets to the [0,1] interval, and then 
perform horizontal dimensionality reduction through the PAA 
representation and SAX, and then partition by the vertical 
decomposition technique. The intersection calculation or 
distance calculation is performed between the vectors. The 
specific calculation method is the histogram intersection and 
the Euclidean distance. Finally, the approximate pairs 
satisfying the conditions in the distance are filtered out, the 
distance between the vectors is recalculated, and k objects of 
each vector of the S data set are selected, wherein less than all 
of the k vectors are returned. 
 

II. PROBLEM FORMULATION AND RELATED KNOWLEDGE 

In this section, we introduce the definition of the basic 
variables and formulas in this article. We focus on the core 
concepts of this paper -- symbolic aggregation approximation 
and vertical decomposition methods. 

2.1  Problem formulation 

Histogram intersections and Euclidean distances are often 
used in image retrieval as similarity measures. When the 
histogram intersection is used as a measure of image 
similarity, the overlap between the two histograms in each 
dimension is added, and if their histogram intersection is large, 
the two images are considered to be similar. The calculation 
of the Euclidean distance is calculated by calculating the 
distance between two vectors, and if their distance in the 
feature space is small, the images are considered to be similar. 
The kNN join result set of this paper is calculated by these two 
methods. 
Definition 1 (Histogram intersection) Let H be a set of 
normalized image histograms (N-dimensional vector 

h,
)1h≤0：H∈h( i 

).Given two normalized histograms h 
and q, we define the histogram intersection as a measure of the 
similarity between them: 

）（1),min(|,|
1





N

i

ii qhqh

 
Using histogram intersections assumes that different 
dimensions are irrelevant. This metric has been shown to be 
superior to the Euclidean distance, mainly because it reduces 
the computation of extraneous vectors in the query results.If 
the histograms are very similar, the intersection of the two 
histograms is about N, because 
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iiii hqhNi  ),min(:h1,
and T(h)=N.If the 

histograms are significantly different, their intersection will 
be small. 
Definition 2 (Euclidean distance)Let V be a set of 

N-dimensional feature vectors v 
)1v≤0：V∈v( i 

,The 
Euclidean distance between two vectors v and q of dimension 
N is defined as follows: 
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Definition 3 (k nearest neighbor) Given an object r, a data set 
S and an integer k, find the k nearest neighbor points of S from 
K as KNN(r,S), and also find a set of k objects from S 

as
),(o SrKNN
，

|,||,|),,(s rsroSrKNNS 
。 

Definition 4 (kNN Join) Given two data sets R, S and an 

integer k, the kNN join of R and S is expressed as SR ，

Each of these objects Rr ，From each nearest neighbor in S 

is represented as
)},(KNNsR,|),{(R SrrsrS 

。 

2.2  Symbol aggregation approximation 

2.2.1  PAA representation of high dimensional vectors 

PAA[15]is a dimension reduction technique and is widely 
used in time series processing and trajectory related research. 
It is to divide the original high-dimensional data into equal 
dimensions, and calculate the approximate distance of the 
original vector by using the distance formula given by the 
following definition 5. The vector used in this paper is a 
sequence-independent vector, and the order of the dimensions 
does not affect the calculation of the Euclidean distance. 
When necessary, you can rearrange the dimensional order of 
the vectors and then use a piecewise aggregation 
approximation to represent the high-dimensional vectors. 
Definition 4 (PAA representation) Given an n-dimensional 
vector R, divide its dimensions into equal parts, and let N be 

the dimension after the division. Nrr ,...,,rR 21
is a 

representation of N dimensions, which has a relationship of 

Nn rrR  ...r 21
 and 

ji rr
.Then the vector R has a 

PAA expressed as
),...,,(R 21 Nn rrr
，Each dimension vector 

is represented as shown below: 
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2.2.2  SAX representation of high dimensional vectors 

Definition 5(Symbol aggregation approximation) Given the 
N-dimensional vector R after the PAA representation, divide 
each dimension into an approximate interval of a symbol 
representation. If A1, A2, A3, ..., An are used to approximate 

the estimate, it can be expressed as
},...,,{R 21 NSAX AAA

. 

Definition 6(Degree of polymerization  ) Assuming that the 
dimension of R is n and the dimension after its PAA 

representation is N, the degree of aggregation   is defined as 

Nn / 。 

Given two vectors R and S, the Euclidean distance after their 
PAA representation can be defined as: 

）（4)(),(
1

2
E 




N

i

NiNiP SRSRD 
 

The histogram intersection can be defined as: 
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It has been shown that the distance represented EPD
by PAA 

is the lower limit of the original Euclidean distance ED
. 

）（6),(),( PE SRDSRDPE 
 

Similarly, PAA is the upper limit of the histogram intersection. 
That is: 

）（7),(),( PH SRDSRDPE 
 

Given two vectors R and S and their SAX representation 

sR
and sS

，We can define new distances as follows: 
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The definition of the histogram intersection is as follows: 
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)ˆ,ˆ( NiNi SRdist
is a subfunction that calculates the distance 

between any two pairs of symbols, where the distance is 
obtained by looking up the table. It is easy to prove that the 
distance between the SAX representations (SE) is the lower 
bound of the distance between the PAA representations 

and EPD
 is the lower bound of the Euclidean distance; 

according to the transitivity, SE is the lower boundary 
approximation of the Euclidean distance: 

)10(),(),(SE SRDSR Ess 
 

Similarly, the distance of the histogram intersection 
represented by SAX is the upper limit of the distance 

represented by PAA, and PHD  is the upper bound of the 
intersection of histograms. According to transitivity, SH is the 
upper bound of the intersection of histograms: 

)11(),(),(SH SRDSR Hss 
 

III. IMPLEMENTATION 

In this part, we introduce a novel Spark-based kNN Join 
method. The main problem we have to solve is the reliability 
of the operation results, the running time and the utilization of 
computer resources when the amount of data is large. Since 
the self-connection and the RS connection are similar, the 
specific implementation of this paper only considers the case 
where the data set is self-joined. 

3.1  SAX aggregation approximation in Spark 

At this stage, we have found the maximum and minimum of 
all vectors. We need to normalize each dimension of the 
vector to the [0,1] interval by the normalization formula, and 
use the PAA as defined above according to the SAX degree of 
polymerization. Indicates that the formula is 
dimension-reduced, and then the vector represented by the 
PAA is SAX-represented. If you need to estimate the distance 
calculation in the partition, you need to calculate the sum of 
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the sum vector T(h), and finally return the key value pair 
<SAX,(T(h), pid)>, pid is the original vector. The number. 
The reduce phase consists of a key-value pair returned from 
the map, which aggregates keys with the same key-value pair. 
The value in the key-value pair will contain multiple vectors. 
The original aggregate is Iterable, which we convert to a list. 

3.2  Vertical decomposition and intra-partition 

calculation in Spark 

In this section, the methods for vertically decomposing data 
sets and intra-partition calculations are introduced. This 
process is mainly for the vertical decomposition of the data 
after SAX polymerization in 3.1. For example, suppose the 
original vector is N-dimensional, SAX indicates that the back 
vector is r-dimension, and the number of partitions needs to 
be t, then each vector is equally divided into t parts, and the 
dimension in each partition is r/t. The vector is then vertically 
decomposed from low to high. Algorithm 1 gives a 
pseudo-code representation of the vertical decomposition. 
The 2-11th lines of the original SAX key-value pair 
decomposition process. The r/t dimension vectors in each 
partition are approximated by SAX distance, and the 
remaining N-r/t dimension vectors are estimated by 
estimation. The sixth line averages the estimated vectors, and 
the eighth line divides each SAX vector into vectors. The 
ninth line requires a vector representation format to return. 
Alogrithm 1 RDD-SAVD-Partition(SAX,newValue,SAID) 

SA,SAID：Symbolic aggregate approximation and its id；
newValue:Estimation of N-M dimensional vectors for each 
partition 
begin 
1. pivot_id = 0; 
2. for i <— 0 to SAX.length do 

3.   for j <— 0 to newValue.length do 

4.     array_add <— getArrayAdd(newValue); 

5.   end for 

6.   array_ave <— getArrayAve(array_id); 

7.   array_add = 0; 
8.   new_sax <— getNewSax(SAX); 

9.   result <— (pivot_id,(sax_id,new_sax,array_ave)); 

10.  pivot_id += 1; 
11. end for 

12. emit(result); 
end 

The calculation in the partition needs to perform the reduce 
aggregation on the vertically decomposed vector, and 
aggregate the vectors with the same vd_id into one. Then 
calculate the distance between the two in each partition, and 
finally output the first k vectors of each vector. Algorithm 2 
gives the pseudo code computed within the partition. Each 
partition is a list collection. The 1-8 lines calculates the 
distance between the vectors in the list through a double for 
loop. The third line calculates the histogram intersection 
distance of the two vectors, and the fourth behavior stores the 
temporary variables. The sixth line extracts the first k 
corresponding to the vector. 
Alogrithm 2 RDD-SAVD-Aggregation(listValue) 
listValue：Aggregation vector for each partition 

begin 
1. for i <— 0 until listValue.length do 

2.  for j <— 0 until listValue.length if i!=j do 

3.   distance <— 
histogram_intersection_sax_distance(listValue(i),listValue(j)); 
4.   comp += Tuple2((listValue(i)._1,listValue(j)._1),distance); 
5.  end for 

6.  result <— getK(comp); 

7.  comp.clear(); 
8. end for 

9. emit(result); 
end 

3.3  Each partition takes the intersection and the final kNN 

Join operation 

When each partition completes the kNN Join calculation, 
each vector of each partition will have a k-to-key-value 
approximation data pair. We need to perform intersection 
operations on these data pairs, filter out the vector pairs that 
satisfy the condition, and then recalculate the distance 
between the original vectors by matching the table with the 
original vector id in the sax vector pair in the previous cache(). 
Since the SAX aggregated vector filters out a portion of the 
data pair, the pair of data that needs to be calculated will 
become less. Algorithm 3 below shows the pseudo code for 
this process. The 1-9 lines calculates the distance between the 
original vectors. We need to find the original vector set 
corresponding to each sax in the symbol aggregation pair 
<saxidi, saxidj>, and calculate the original distance and the 
set internal vector between the two sets. The distance between 
the two. The 2-5 lines calculates a vector pair inside a saxid, 
and the 6-9 lines calculates the distance between the vectors 
between saxidi and saxidj. 
Alogrithm 3 
RDD-SAVD-ResultIntersection(sax_ids,sax_map,old_vector) 

sax_ids：Take the SAX pair after the intersection, 
sax_map: SAX with the original vector id 
old_vector: Original vector 
begin 
1. for tmp_list <— sax_map(sax_ids._1) do 

2.   for tmp_list1 <— sax_map(sax_ids._1) if tmp_list._2 != tmp_list1._2 

do 

3.    distance <— 
histogram_intersection(old_vector(tmp_list._2),old_vector(tmp_list1._2))
; 
4.    result += Tuple2((tmp_list._2,tmp_list1._2),distance); 
5.   end for 

6.   for tmp_list2 <— sax_map(sax_ids._2) do 

7.    distance <— 
histogram_intersection(old_vector(tmp_list._2),old_vector(tmp_list2._2))
; 
8.    result += Tuple2((tmp_list._2,tmp_list2._2),distance); 
9.   end for 

10. end for 

11. emit(result); 
end 

IV. EXPERIMENTAL CONFIGURATION AND DATA SETS 

In order to verify the effectiveness of the proposed method in 
the Spark-based kNN Join method. We implement the 
algorithm of this paper separately with Spark architecture and 
Hadoop architecture, and compare it with the existing 
improved Hadoop framework based on the same 
experimental conditions. The experimental parameters were 
changed, the changes of their performance were observed, 
and the experimental results were analyzed to obtain objective 
conclusions. Our experiments were done in Hadoop 2.6.4 
cluster and Spark 2.1.1 cluster. The cluster has 10 nodes. The 
configuration of each node is as follows: core: 4 cores, 
memory: 6 GB, disk: 500 GB, operating system: Linux 
CentOS release 6.2 (Final). In Spark, one of them is the 
Master node and the other 9 are the worker nodes. 
The experimental data used primarily in this paper is from the 
data set provided in [15] and can be downloaded from 
http://corpus-texmex.irisa.fr/. We used some of the data and 
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modified it, with 128- and 960-dimensional datasets for 
downloading data, and 256 and 512-dimensional datasets 
generated by 960-dimensional datasets. Due to the needs of 
the experiment, we will number each line of the original data 
by linux command, which can make the calculation more 
efficient. 

V. EXPERIMENTS 

In the existing distributed high-dimensional similarity 
connection model based on MapReduce, we improved its 
algorithm into kNN Join algorithm and established a model to 
compare with it. We mainly adjust the size of the dimension 
(from 128 to 960) and adjust the size of k in the kNN Join in 
the experiment (from 10 to 50). These methods will be the key 
factors in the following experiments to evaluate the efficiency 
of the algorithm. 

5.1  Experimental evaluation 

In this section, we mainly compare the execution time of our 
proposed algorithm. A total of two sets of comparative 
experiments were set up, which are the effect of dimensional 
change on experimental performance and the effect of 
parameter k on experimental performance in kNN Join. The 
influence of dimensional change on experimental 
performance includes: 1. Comparison of original 
improvement method[13] and the method of this paper on 
MapReduce platform and Spark platform; 2. Comparison of 
Euclidean and histogram methods. In order to facilitate 
comparison, in addition to the experimental comparison of 
Euclidean and histogram dimensions, we all use the histogram 
to find the result of kNN Join. The experiments in this paper 
are all tested by self-joining of data sets. 

5.2  The effect of dimensional change on experimental 

performance 

In order to reflect the effect of our proposed method, we 
improved the original SAX-based high-dimensional data 
similarity connection method, so that it can perform kNN Join 
operation, and use it as a reference method to compare 
different dimensions with our proposed algorithm.In the 
experiment, other parameters were adjusted to a fixed value, 
the k value was 10, the SA polymerization degree SA_DP was 
8, and the vertical decomposition polymerization degree DP 
was 16. Figure 1 is a graph showing the effect of changes in 
dimensions on the run time of the three methods. 
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Figure 1:Effect of dimensionality
 

Through experiments, it is found that with the increase of the 
dimension, the time used by the three methods is increasing, 
and the overall trend is consistent. The MapReduce-based 
method is more time-consuming than the Spark-based method. 

Of course, the original method takes a relatively long time. 
The proposed method has different performances on different 
platforms. However, the Spark-based SAVD algorithm is 
used in different dimensions and has the best experimental 
results. 
Because our similarity method has two kinds of Euclidean 
distance and histogram intersection. We performed a 
comparison of different methods on the same platform, but 
the histogram intersection has fewer calculation steps and 
higher computational efficiency, so it takes less time. Since 
the histogram intersection in this paper proposes two methods, 
after many experiments, we find that the second method is 
better than the first one. So in the following we all use the 
most efficient histogram intersection for comparison. Figure 2 
is a graph showing the effect of the change in dimension on 
the Euclidean and histogram intersection run time. 
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Figure 2:Effect of dimensionality 

From the trend graph drawn from the experimental data, we 
can find that as the dimension increases, the time spent on 
kNN Join is gradually increasing, but the calculation of the 
Euclidean distance does not take more time for the method of 
calculating the histogram intersection. 

CONCLUSION 

The kNN Join of high-dimensional data is computationally 
intensive, especially when the amount of data is very large, we 
need to find a simple way to reduce the amount of 
computation. In this paper, we tested the method with 
different data sets. A lot of experimental research shows that 
our method is more efficient, and Spark-based kNN Join is the 
shortest time. Our method has a good effect on improving 
kNN Join of high dimensional vectors. 
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