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Mathematical Modeling of a Transverse Shear
Deformation Thick Shell Theory

MOHAMMAD ZANNON, MOHAMAD QATU

Abstract— Three-dimensional theory (3D) of elasticity in
curvilinear coordinates is employed to understand the
stress and strain distribution in the middle surface of a
thick composite shell under various operating conditions.
The equations of motion are derived by making use of the
relationships between forces, moments and stress
displacements of shell using Hamilton’s principle of
minimum energy. The necessary theoretical assumptions
are discussed to simplify the three dimensions to a set of
two-dimensional (2D) shell equations without violating
the theory of elasticity. Displacement through the
thickness is of third order in this analysis as compared
with the first order approximation as previously
published research. Equilibrium equations are
formulated using these equations to achieve a set of linear
partial differential equations and solved for exact
solutions using Fourier series expansion for simply
supported laminated cross-ply boundaries. This solution
can be further used for various vibration analysis and
optimal design of thick shell structures. Finally, the new
additional parameters using the third order shear
deformation of thick shell theory obtained from Fourier
expansion is compared with the first order shear
deformation shell theory from the literature.

Index Terms—Shells, Thick, Shear Deformation,
Laminated, Exact Solution, Cross-ply

1. INTRODUCTION

A shell is a three dimensional body bounded by two close
surfaces. Its thickness is constant if these surfaces are parallel
to each other. In general, we can assume that the thickness
(i.e. the distance between these two surfaces) is much smaller
in comparison to its length, width and radii of the curvature.
Considerable amount of works been done on shell theory
(Koiter, 1969; Love, 1892; Reissner, 1945; Ye & Soldatos,
1994; Qatu et al., 2012). There are some differences in the
results obtained by various researchers depending upon the
assumptions made, the resulting theory derived, and the size
of the parameters. The solution procedure used in solving the
equations of motion incorporates the stress—strain, the
strain—displacement and the associated boundary conditions
of the shell.

Based on the classical linear elasticity, Love was the first
person to present a successful shell theory (Qatu, 1999; Love,
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1892; Ventsel & Krauthammer, 2001). Love was able to
unitize Kirchhoff hypotheses to simplify the relationship
between strain displacement and constitutive equations, in the
case of the plate bending theory having small deflection and
thinness (Ventsel & Krauthammer, 2001). These are the
well-known Kirchhoff-Love’s assumptions (Koiter, 1969;
Love, 1892 ). Love’s assumptions of thin elasticity shells are
referred to as the classical laminated shell theory.

Love’s theory had certain shortcomings even its well accepted
popularity and success in the applications of shell structures,
due to the incorporation of infinitesimal strains of bending
(small terms) and extension. However, in Love’s theory, only
few of these terms in the model equations were sustained.
Thus, in Love’s theory of differential operator matrix, the
displacement of equilibrium equations of certain shells
became asymmetric. However, later the inconsistencies of
Love’s theory (Timoshenko & Woinowsky, 1959) were
modified by Reissner, (1945) mathematical model for
two-dimensional ~ linear  thin  shell theory using
Love-Kirchhoff hypotheses. “Reissner derived the equations
of equilibrium, strain—displacement relations, and stress
resultants expressions for thin shells directly from the 3D
theory of elasticity by applying the Love—Kirchhoff
hypotheses and neglecting small terms of order

%2 (i=1,2) (Vasov, 1964).
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In order to develop a better thick shell theory, we re-examined
Love’s first order approximation theory of thin shell. Various
studies (Qatu, 2004; Noor, 1990; Leissa, 1973) concluded
that even for thick shells, in comparison to other stresses and
strains, the transverse normal strain and stress remains small
enough to be neglected (Love, 1892).

Many shell theories and associated problems were derived
based on Love’s first approximation as mentioned above.
However, during the middle of the 20th century (Leissa.
1973; Qatu, 2002), many of these theories found to be
inconsistent, as reported in the literature on shell theory e.g.
Timoshenko & Woinowsky (1959). The introduction of
unsymmetrical differential operators by rigid body motion
contradicts the theory of reciprocity thus in free vibration
analysis, which yields natural frequencies in complex domain.
Moreover, other inconsistencies were introduced due to the

z
assumption of small thickness (E <<1 and % ) and also

due to symmetric stress resultants (e, N, =N,

and M g = M ﬁa) of the shell. In the case of non-spherical

geometrical structures, the stress resultants are not always
equal. In order to overcome such deficiencies, various
theoretical treatments have been proposed by several
researchers. However, Vlasov (1964) resolved these
discrepancies by extending the strain displacement term.
Usually the terms in stress resultant equation expansion using
Taylor series have negligible terms in the denominator (Noor,
1990; Qatu, 1999, 2002). Various survey articles on these
topics were implemented on the behavior of homogeneous
and laminated composite shells (Ambartsumian, 1962;
Gol’denveizer, 1961; Timoshenko & Woinowsky 1959;
Love, 1892). Earlier theories and analyses about the effects of
laminated shear deformation composite materials allowed its
importance in shell theory when compared with isotropic
materials (Qatu, 2004).Often, higher order shear shell
deformation theory included higher order approximation,
arising from stress-strain and rotational inertia. However,
those who worked earlier, on shear deformation shell theories,
failed to consider (1+z/R) term in the equations of stress
resultant as discussed above. This was reported by Bert,
(1967) and followed by Qatu et al. (2004), since it increased
the inaccuracies in the stress-strain equations for the thick
laminated shells. These results were obtained either by
integrating the above equations exactly or by Taylor series
expansion, which showed good agreement with the 3D
elasticity theory (Qatu et al., 2012). Higher order terms of the
shear strain, and rotary inertia approximation were used by
many others in the shear deformation theories but again
neglected (1+z/R) in the stress resultant equations (Kapania,
1989; Khare et al., 2005; Qatu et al., 2010), which is only
applicable to shallow shells. These inaccuracies led to the
development of constitutive equations and were observed by
many researchers (Ye, JQ. & Soldatos, 1994; Kant &
Swaminathan, 2001; Qatu, 1994; Qatu et al., 2010). However,
Leissa (1973) used the geometric series to truncate these
terms and Qatu et al (2010, 2012) integrated this term exactly
and the resulting results were in good agreement with 3D
theory of elasticity. Others who had worked on the same
problem, although included higher order terms of shear
strains, yet once again neglecting the contribution of the term
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(1+z/R) and mostly applied to shallow shells rather than deep
shells. Therefore, the inclusion of this term in our present
article would add value to the existing theories and can
present a better approximation for thick shell under various
operating conditions.

Due to the importance of the shells of revolution in the
development of thin shell theory, contribution of (1+z/R) term
cannot be waved aside. This has various applications in
engineering. However, Reissner (1941, 1945) developed a
spherical shell theory and obtained a classical derivation of
the bending problem for shells of revolution. He used
asymptotic method for integration after reducing the resulting
differential equations of the spherical shell. Fligge (1962)
worked on the spherical and conical shells and, was able to
derive general solutions and the result was based on the
classical displacement method.

In short, a complete and general thin elastic shell theory from
the theory of linear elasticity was first developed almost one
hundred years ago by Love (1892). Prior to this development,
Aron (1874) presented a model equation for bending of thin
shells using the Kirchhoff and Clebsch’s small strain and
finite  displacement theory. However, the erroneous
mathematical treatment and the justification given in Aron
(1874) model led to Love’s theory of thin shells. Since then,
many new developments in the treatment of shell theory for
varied shape, size, and method of solution and its
interpretation aroused from various researchers in this field
(Ventsel & Krauthammer, 2001; Reddy, 1984; Ye, &
Soldatos, 1994; Qatu et al., 2013). Towards this end, in this
paper, we propose our contribution towards the mathematical
theory of third order shear deformation thick shell theory by
Zannon (TSDTZ) and its stress-strain deformation at the mid
thick shell surface.

2. MATHEMATICAL AND THEORETICAL
ASSUMPTIONS

2.1. Displacement Models.

In the present work we consider a thick shell having smaller
thickness in comparison with other shell parameters such as
width, shape length and curvature radii, which is usually taken
as (1/10) of its measure. In any vibrational analysis, thick
shells often includes rotational inertia factors and shear
deformation (Qatu, 2004, 2012). Middle plane displacements
are stretched in terms of shell thickness in shell deformation
theory and can make use of first or higher order
approximation. Therefore, three dimensional elasticity
theories are reduced to two dimensional theories by
neglecting the normal strain in comparison with other
components of the strain, which are acting on the plane
parallel to the middle surface. Generally, such assumption can
be justified outside of the neighborhood of highly rigorous
force, hence the stretching in the z-direction can be ignored,
which leads to zero strain in the azimuthal (z) direction.
Hence the displacements are written in the following
polynomial form in variable thickness (z)

u(e, B,2)=uy(a, f)+ 2y, (@, )+ 7', (. B)
v, B.2)=v,(a, B)+ 2y, (@, ) +2°p, (@, B)
wa, f,z)=wy(a, p)+zy (@, B).

2.1)
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—h h
Where — <z < E, h is the shell thickness, u,, ,v, and w, are middle surface displacements of the shell andy ,y/ p W, are

middle surface rotations and @, , ¢y are higher order terms rotation of transverse normal. In the third part of the equations

(2.1), we are assuming &_ # 0. By substituting equation (2.1) into the strain-displacement equation of the elasticity theory, the

following strain-displacement equations are obtained:

1 1
g, =—— (g, +zK,, K, ), £, =————(&,, + 2K,
=z z
(1+/eu) (1+/?B)

1) 2 (€)) 2 2)
+z +z'KK, )

1
.=y _(a,B)=0, &g, :m(‘g%ﬁ + 216, + 27K, )
+
R

(2.2)
1 m 2 @ 1 i 2~
€4, = (1+7 )(SOBa TIKg, FZTK ) Ve = (1+7 )(Vouz +zG T+ 227G
R, R,
Y. = ﬁ(yoﬁz +zE" + 22 E®).
x,
Where the middle surface strains are
e, :%ZL Yo OA Wy 1OV, 4 OB Wy
o AB OB R, BB AB oo R,
e :i%_u_oa_A_Fwo e :iéuo_vo a_B_‘_w0 (2.3)
P 4060 ABOB R, " BOB AB oo R,
1 ow, u, v, 1 ow, V, u,
Y oa- :ZE - E*Raﬁ Yo Yop- :EE - R_ﬁi R, T,
The curvature and twist changes of the shells can be written as
> _1Oow, W o4 w._ o o _ 1 2w, LW OB  w,
“ A4 O AB &3 R, ° A4 op AB o R,
> _1ob, by 24 o1 0Py b, OB
o A Ocx AaB op° " A4 8B AB oo 24

(U_iawﬁ v, o4 4V K(Z)_La(l)ﬂ ¢, oA

B 4 oo AB 6B R, P A4 ox AB B

e _1Ow, Wy OB w. o _1 0b, b, OB
b B OB AB oo R, " B oS AB oot
Here,
G(l):ial//z_'_z(p _Wﬁ G(Z):¢_ﬁ_ ¢a .
o (2753 sz Raﬁ
0 =LV oy Ve pe t b
B 8B R, R, R,

. . 2 7(2) . .
The contribution of the terms zG"”, z°G'”, zE"” and Z E™" to the overall accuracy of the theory is presented in the later

section. Equations (2.2) - (2.4) establish the stress-strain displacement relationship required for 3rd order shear deformation
shell theory, which are different from previous researchers (Qatu et al., 2010, 2012; Ye & Soldatos, 1994; Reddy, 1984; Ventsel

& Krauthammer, 2001).

z
After integrating the stress over the thickness of shell by incorporating the term (1 + E) , we get the following moment and force

resultant equations.

N, o N o
a n/2 o B n/2 B
— z — z
Ny b= hj/z G [1+Aﬁjdz, Ny, = hj/z G (1+Aa)dz. (2:5)
Qoz Oz Qﬁ O-BZ
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Similarly, the bending and twisting moment resultants are defined as

M(il) w2 | Ca M;fl) w2 | OB
M(SB) = I Cup (1_'_%%]2612’ MI(;O: = OCup (1+%?a)zdz
L I L R Y (2.6)
M(iz) w2 | Ca Ml(32) w2 | OB
M(iz) = I Cup (1+%aﬁj z’ dz, Mlgi) = j Cup (1+%?a) z’ dz.
Pa(z) —h/2 c,. 1D[3(1) —h/2 Cp.
Where RZ“) R Pa(z) R Pﬂm and Pﬁ( ? are higher order shear resultants terms and

o, =0,&, +Op» Eg +0O5 8. +0 Yap-
Cg =0, &, +0O,, Eg + 0,58, + 0,5 Yap-

. =038, +Os&; +058. + O3 Vyp-

Cp. =04 Vp. +Ous V.-

Cp. =045 Vg +Os5Vq--

Cup =16 € + OrsEp + Os6 €. + O Vap-

It is noteworthy that, though the stresses O and o po ATC the same, but the stress resultants Naﬂ and N p, are not (Qatu,

— VO REE PION
=Ny M, =Mg,;

2004). These stress resultants are only equal (Naﬁ M Lz) =M ;i)) if the radius of curvature, R, = R,

which is the conditions of spherical shells.
Therefore, the stress resultants obtained from the above equations (2.5)-(2.6) can be rewritten in the following matrix form:

N, A, A, A, A, A, B, B, B, B, D, D, D, D,l| &,

N, 4, 4, A, 4, A, B, B, B, B, D, D, D, D,| &,

N, A, A4, A, A, A, B, B, B, B, D, D, D, D,]| %-:

N A, A, A, A, A, B, B, B, B, D, D, D, D, || o

Ny, 4, A, A, A, A, B, B, B, B, D, D, D, D, || o
M| |\B, B, B, B, B, D, D, D, D, E, E, E, E,| &
My \=\B, B, B, B, B, D, D, D, D, E, E, E, E.|* | @7
My | |B, B, B, B, B, D, D, D, D, E, E, E, E,| %
M, | |B, B, B, B, B, D, D, D, D, E, E, E, E,| %
M\ \pb, b, p, D, D, E, E, E, E, E,F, E,_ F,| &’
M7\ \p, b, b, D, D, E, E, E, E, FE, E, FE, FE, |~
My | \p, o, b, D, D, E, E, E, E, E. FE, E, F,| %o
M) |p, b, b, D, D, E, E, E, E, F, E, F, F,]| 5.
O, | [4s A, By B, D, D, |[7ou |

O A, 12144 B,s é44 D, DA44 Yop=

7Y B, B, D, D, E, E;||cG?

20\ T| By B. D. B, E. B, || z20 | Y
7 D, D, E, E, F, F,;||lG?
7> | |p., D. E,. E. F,., F.,|[E®_
Where Al.,,,Bl.,,,Di].,El./,,F;f,Zif,E.i,Bij,_i/.,f;/.,;li/.,éi/,DA”,EAi/ and ﬁ” are defined below.
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N N
k) 1 = (k) , 2 2
A. . > 0. (h h ), B.. =— 0O.. (h h ),
Kk Tk—1 k k—1
Yo ok=1 Y Vo 2pa Y
1N S k)3 3 1Y~ x),,4 4
Dy_§ 2 sz (h k—h k—l)’ EU—Z > Qy (h % h % 1), (2.9
k=1 k=1
1 NN (k
ro=—3 0. w -1 D
B.. B..
A.. = vy 4.+ IB B _ vy
ij jo Rg > ijp R, U ja Ry ’
D.. E..

3. = UB B _p. Y p _p. . UB (2.10)
i B R, ij ijo Rg i ijp R,

= Tija Fz‘jﬁ = Lija - B
E..=F.. + ,E..=F L F..=F.. + ,F.. = +

ij jo RB ij i~ R, ij o RB ij P R,
Where A//’Bu’Du’E F are defined as follows:

_ 1 & _
(k) (k) 2 2
= E KinQg/ (hk _hkfl)’B;‘/‘ =—2 E KijQ;/ (h M —h k—l)
k= =1

1 & —
(k) 3 (k) ,, 4 4
.——E K.K,0 ", —n, ). E,.jz—z K.K.0," (" —h',_)
f1 452 2.11)

1 < —
z (k) 5 5 ..
F:j = ; KIK/QI/ (h k _h k—l)' v l’]=4’5-

Where K, and K are shear correction coefficients in 7and j directions, /1, — A, _, is the thickness of the & ™ layer of the
composite shell and

N

P ARy i

ijn h 2 Bijn - Z h
k=1 w14 2 k=1 L
/q

R
(k) (k)
h Q,, hﬁ Q,,
D'j" B 1 z U" B 1 z
+ R . + R (2.12)
N ozt O N oz QW
Fo=>["——tdz 1, =>["——tdz Vn=o.p
ijn h = ijn h P
k=1 L R k=1 L R

n

In order to obtain better numerical stability, we truncated the equations described in (2.12) and the term 1/ (1+(z/R))) in
equation (2.12), which can be written in geometric series as
3

—+ (Higher order terms). (2.13)

1 z z? z
—:1___|_ - —
1+z/R, R, R

n n

z
The term higher than O(R—)3 are neglected to reduce the mathematical complexity, which is used in equations (2.9)-(2.12) and

n

obtained the following form and is similar to the derivation given in the references (Qatu et al., 1999, 2010, 2012) for
comparison.
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A;=A; —cyB, +c,D,;, A, =A4, +c,B;, —c,D,,

~

B,=B,—c,D,+cE;, B,=B, +c,D, —cE,,

v (2.14)
D, =D, —c E, +c,F;, D,=D, +c,E, —c,F,,

E,=E,—cyF,+cL,, E,=E,+c,F,—cL,. Vi=12,34,56.
And where

11 1 1
C=|—-—| and ¢, =| —
R, R R, R.R,

o B o

2.2. Hamilton’s Principle: Equations of Motion and Boundary Conditions.

The behavior of elastic vibrations, excitation and its inherent properties on arbitrary bounded shells are often difficult to solve
from the elastodynamic theory. Making various dynamics assumptions about the motion of the shell surfaces under numerous
conditions can be used to solve these problems, one such method is the vibrational or Hamiltonian principles of minimum
energy. Hamiltonian in some approximate form can be used to construct surface vibrations. With the help of Hamilton’s
principle various physical mechanisms such as perturbation in motion, rotary inertia, twist and shear distortion can be analyzed

(Bert & Baker, 1969; Ames & van der Houwen, 1992; Love, 1892).

The Hamilton’s principle (Ye & Soldatos, 1994Khare et al., 2005) of minimum energy of the governing equation is
tl

S j (K+W —U)dr =0. (.15
tO

Where U is the strain energy, K the kinetic energy and W the external work by the system. The total strain energy and the

middle surface stress and strains resultants of the shell have the following relationship:

U=—I{G g, topge, +to g +o 48, +0, Y, +O, 7. 3dV

—_ 1 (1) (2), _(2)
= II{N €ou + Nycop + N_€g. + Noy&o,y + Npu€ope + MOk + M Pk

apB ™~ oap PBa 0B

(2.16)

(1) (1) (2) (1) (1 (2) ) (H__ (D (2) (2)
+M[3 +M +M(zp ap +M(x[} ap +M/m Ba +M/m Bo +Q(xy0(1z

+O0,7op. + PGP + PG + POEY + PPE®yABdod .

The total external work and the total kinetic energy of the thick shell

J— 1> 1) «2) 2>
W = J. J- {g 1, + I Ve + q, W, + 772, (&2 —+ 2. & —+ 7722 _\ys _
o B

—+ m;;)E“) —+ m;BZ)E(Z)}AB doo d 3.

1 -
T:;I{u—+v2+w2}dV

2

S S 1 1 Ve
= —_.-J- {C2ey”> +voo +w 2| 7, +~ 7, ( -+ >+ =
Ry R By

o B

r

=3 B

1 1
+ 2 +wf)[13+14(R -+ )+RR j
1

e
—+ 2(zz -+ v —+ W, _ 7, + 7 —+ —+ =
e, oW ow_,)[ = ;(R Ru D 72 j

5 1 1 7
+ 2z p, VP +w,;)[14 +15(Ru -+ =, D+ 72 ;’Q j

X , (2.17)
+2(<pa\ya+<p,jwp)[ls—|—16(R —+ )—|—R e j

o B

N 1 1 7
“+ (p2 +(P’§)[I7+[*‘(R “+ >+ 2 j}Adedoch

- PAgN R, R,

Where the inertia terms are
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N
(1oL L L I I 1 LG )= D [ p 9 [1,2,27,2,2%,2°, 20,27, 28 | dz

k=1 ey

In the above Hamilton’s principle derivation, equations of motion and boundary conditions are derived by substituting the

equations (2.16) and (2.17) in equation (2.15).
The resulting equations of motion are (Reddy, 1984; Qatu et al., 2013)

0 OB 0A 0 AB AB
—BN,)-——N,+—N_+— (AN, )+—0, +—0, + ABq,
oa oo op op R, R,

= AB(1,u, + Ly ).

0 OB 0A 0 AB AB
— (BN )+—N,, —— N, +— (AN )+—0, +—0, + ABq,
oa oo op op R, 5

= AB(I,v, + Ly ).

o 0 N, N, N_,+N, —
—(BO,)+— (AQ/j )—AB(—+—F+——— ¢ ABq, = AB(I,w,).
oa op R, R, R,

a (€)] aB () 6A (€D] 6 (&3] AB (e)] (1
—BM, ) -——M, +—M [ +—(AM )—- ABO, +—F,  + ABm,
oo oa 0 op R,

=AB(Lu, +Ly,).

a (&3] aA (1) 6 (&) aB (€D] AB (1) (&3]
—aM ) -— M +—BM H)+—M, —ABQ, +—F, + ABm,
op op oa oo R,

= AB(1,v, + Ly ).

a (¢)] 8 (1) 1\4;1) 14/(;) 14;115) 14“)
—(BP ' )+— (AP, ')— AB(N_ + + +

a B z
oa op R R R

o B B B
(2)
a 2) 68 2) a 2) (1 AB (2) ABPﬂ
—BM,)——M; +—(AM ) - (2ABP,”" + — P~ +
oa oa op R, Ra,B

= AB(Lu, +1,0,).
A

o o 0 AB AB
—(AM ) —— M +—(BM)) - (— P;” + — P\ +2A4BP,") + ABm”
o R R

ap

op g op F) ]
=AB(Iv, +1,0,).

_ 11 I
Where 7, = | I, + 1 | —+— |[+—22 |,V i=1,2,3,4.
R R R,R,

« p
The corresponding boundary conditions are given below for & , a constant
either N,, —N_, =0 or u, =
either N,,, —N_,, =0 or v, =0
either O, 6 —QO,6 =0 or w, =
either M[) — M " = or Y, =
either M(();)ﬁ —M;}; =0 or Y, =
either R)(OIL) —1?“(1) =0 or wv_ =0
either M2 — M > =0 or ¢p, =0
- ) 2 _ —
either M, —M_, =0 or p; =0

Similar boundary conditions are obtained by taking 3, a constant.

35

+—)+ ABm_= AB(1y ).

)+ ABm'”

(2.19)

(2.20)

(2.21)
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3. MATHEMATICAL ANALYSIS

It is known that there is no exact solution for a general lamination structure (shell, plate) with boundary conditions and/or
lamination having series of sequence and layers. The exact solution of the equations of motion and boundary conditions for
simply supported cross-ply thick shell (Fliigge, 1962; Leissa, 1973; Ye & Soldatos, 1994) is formulated in the section.
These partial differential equations of the motions (2.19) have solutions of the form (Librescu et al., 1989; Reddy, 1984;
Reissner, 1945; Qatu et al., 2012, 2013)

u, = Z uo,mnCOS(A*OL) Sl'n(B*ﬁ)eiiw, V, = Z VO,mnSin(A*a) COS(B*ﬁ)eﬂm

m.n=1 m.n=1

w, = > w,, Sin(4'a)Sin(B'B)e™, y, =Y v, Cos(4da)Sin(B'B)e™

m.n=1 m.n=1
N . N 3.1
v, = > v,..Sin(A'a)Cos(B'B)e ™, w_ = D ., Sin(4d'a)Sin(B B)e ™
m.n=1 m.n=1
N ) N )
¢, =24, Cos(Aa)Sin(B'Be™, ¢, =D ¢, Sin(Aa)Cos(B'B)e™.
m.n=1 m.n=1
B mim B nri . . . . i
Where 4 =——,B = 7 in which @ and b are the dimensions of the middle part of the shell along the ¢ - and
a

3 -axes, respectively.

Substituting these equations (3.1) into the differential equations of motion (2.19) yields a set of eight linear algebraic systems in
terms of its respective components and collecting the coefficients, which can be written as an eigenvalue problem. Therefore,
the resulting equations can be written in the following matrix form:

UL]=A IM]3{A} =113 62)

Where A = @° , ® is the natural frequency and {A} is the displacement vector. The stiffness parameters LI./. and the mass

parameter M i of the thick shell can be defined

- 2 —A. —A4 . .
Ln:_An'A _Am'B + 552 +—442’ LIZ =_A12.A "B _Aﬁﬁ.A B
(R (R,
A4 -4 A4 -4 A ) _ 2 . 2 A 2
L, = 11 4 D2 4 s ,L,=—B, -4 - B, B s 44
‘ R, R, R, R, (R,)
R .. B, -A B, -A B_-A
L.=—B,-A-B —-B_-A-B,L,=A, -4 + i = R
’ : R, R, R,
— W2 ~ .2 2B, D, D . . " "
L17 =—4 A 66 B + = — = - 442’L18 :_Dlz'A - B —D“'A -B
R, R R, (R,
i, B a 4
N N B w — L2
Lzlz_Alz'A -B _Ass'A 'B’Lzz =——2 _A66 A + 552 442
Rg (R, (R)
AIZ B* ’:144 B* > * * * * *
L, Ty B L == B, A B =B A B
3 B
. 2 2 B. 1 . B,-B B, -B" B, -B
L,=—B, B —B,- A ——2_ 4 % [ -4 B4 2 n
(R,) R, R, R, R,
. . . 2 _ 2 B, 2. b
L,=—-D,-A-B -D_ -4 -B,L, ,=—D, -B —D,-A + + + 5
R, I?O([3 Rﬁ (Rﬁ)
L_z] _ s A 4 Zu A + A, -4 ) L32 _ A44 B + AIZ B
R, R, R, R, R, (3.3)
L =—4 _A*z 71:1 _B‘2 _ An _ Alz _ Al2 _ (Ao() +2'A66 +Ab6)
N ) b (R (R) R, R, (R,
- * En'A* BIZ.A* o * Bl'7.B* ézz'B*
L,=—A4,-4 + + , L,=—A4,-B +— +
- R, R, i R, R,
L 7_A’2 E _ B 23’5 _A|3 _ Bll _Azz _ 2 BIZ _(A36+A36)_(2'B66+2'Bsﬁ)+ Bzz
36 55 44 2 5 5
R, (R) R, R -R, R, (R,) R,)
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— A -D.,. D,-A D, -A
L, =2-4 -B__ + — + = -+ 5
o RaB 13ﬁ R,
. B - D D -B" D _ -B"
L?s =—2-8B B44 — 44y 12 4+ 22
R, R, R/i
L41 :L!4 > L42 :L24 > L4’s :L34
— 2 ~ 2 — é44
L, =—D, A — D, - B _Agi_(Ruﬁ)2>
L. =—D,-A4A -B —D_-A4 -B"
.o DA D, -A
L4( :BIB-A 7B<<'A -+ >
B B RO(
— . N .2 — D E
L47 :_Ell A — GG.B —2-B,, + = — 442
Roc[j (Roc[ﬁ)
L,, =—FE, A B — oo~ A B, L  =L,, L, =L, ,
R B L2 - D,,
Ls’; :L:;s > L<4 7L45 >L55 77D22 B 7D()6 A 7A44 - 2 >
(R,
D, -B D, -B . . . . . .
Lso = = + - B44 B, L<7 = E12 A B — 66 A B,
R, Rﬂ -
- — L2 ~ D E
L., =—F,_-B —FE, -A —2-B,, — - Lt
R R
B o a3
L()I :Lls’ L(z :Lz(’ L(’; :L3(’ L(4 :L46’ L(s :Ls(
J— w2 ~ w2
Ly =— D A - D, - B _A33
_Bl3_323_ D, _ 22 _(Bzo+Bss)_(D66+2'D6(>+D66)
2 2 2
R, B (R, (le ) Roc[j (Roclj )
— . E_-A E, 6 -A @ E,-A
L, =—2-D_ -4 + -+ -+ .
o Ra/; R Rﬁ
Fa - A44 B’ EIZ.B* ézz'B*
LGR =—2 Dss B+ -+ -+ > L7| _L|7’ L72 =L77’
R[} R, R/i B
73 :L37’ L74 :L47’ L75 :L57> L7(, :L(ﬂ ’Lxl = le’Lx4 = L4x’ Lxs = Lsx
r F -4 —F£, -B —a.-D 4 F L
= — - — . — . 4+ 55
77 1 66 EE 2 2
R, (R, (3.4)
L,, =—rF, A -B — £, A B, L, =L,, L, =L,.,, L, = L
7 = I Vs N > B*Z = A*2 o 66 _ 544 _ A44 D
87 78 > 88 22 66 aa
(R R, (R,
The mass parameters M . is given by
y
M, =7, , M, =T, M,, =M, =M, =M, =M, =M, =O
AM,, =7, , M, ., =2,, M, =M,, =AM, =M, =M, = M, = O
N =T|, M, =M., = NM,, = NM,, = M,, = M,, = M, = O
A, =7, , M,, =7,, M, =M, =M, =M, =M, =AM, = O
M, =7, ., M. =7,, M, =M_, =M_, =M, =M, =MAM_ =O
A, =T, , M, =M, =M, =M, =M, =M, =M, =0
M, =T7,, M, =M, =AM, =M, =M, =M, = M, = O
A, —T,, M, =M, —M,, —M,, —M, — M, — M, — O (3.5)

The force vector {f,} is given by:
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N N
q,=>.q,, Cos(Aa)Sin(B'BYe™, q, =D q,, Sin(4'a)Cos(B e ™

k,l=1 k,l=1

N
a,=2.4q,, Sin(4'a)Sin(B' B)e™, m” Zm‘” Cos(A'a) Sin(B'B)e ™
k,1=1 k.,1=1 3 6)
. N . ( ’
m Z m, Sin(A'a)Cos(B'B)e ™, m_= D m_, Sin(A'a)Sin(B'B)e ™
k,1=1 k,1=1

m"? Z m Cos(A'a) Sin(B'Bye ™, m} Z m Sin(A'a) Cos(B'B)e ™
k=1 k,1=1
4. Numerical Results and Discussion
In the above section we have given the mathematical formulation of thick shell, and an extension of first order shear deformation
shell theory. The additional new parameters using the third order shear deformation shell theory by Zannon (TSDTZ)obtained
from Fourier expansion, which is given in the table 4.1 and compared with the first order shear deformation shell theory from

the literature.

TABLE 4.1: Comparison of parameters of first order versus third order shear deformation shell theory

First order SDST TSDTZ
(Literature ) ( Present study)
Condition e. =0 e #0
Unknowns
Displacements/rotation Uy Vos Wosl oW/ g Uy Vos Worl o3V oW - 0 P
Force resultants N,, N aﬂ , ﬂa 0., Q/; N, N Naﬁ , ﬂa 0., Qp
Moment resultants M, M Maﬁ ’Mﬂa ,P, P M(l) M(2) M(l) M(Z) M;E ,MO(!Z)’

)} 2 (1) 2 1 (2)
Mg MG PV PP P Py
)

Strains at a point (3D) @) e 4@

€062€0p2€0ap2€0pa >V 0az2Y0p:- Ko oKy sKp Ky s
@ .2 (1) .(2)
Kaﬁ b Kaﬁ b Kﬁa ’ Kﬁa
Strains at the middle surface K 2Kops K g KS) , K((j) , 1(}1) , 22) ,
@O .2 ) .(2)
Kaﬁ ’ Kaﬁ ° Kﬂa b Kﬂa
Equations
Motion 5 8
Strain-displacement 10 15
Stress-strain 12 19

The above equation (3.2) in the matrix form is solved using MATLAB commercial code. This code is specifically modified for
static vibration problems of simply supported cross-ply laminated composite shells. The solution is also valid for cylindrical

shells having principle radii R, = RaB =00. For the numerical computation we compared the results with the orthotropic
material properties of the cylindrical shells having length-to-arc ratio of one unit (i.e.@ /b =1, and the Poisson ratio of 0.25.
The shear correction factors ( K ) for both directions are taken as 5/6. In static analyses, shells are under uniformly distributed
load q. Thus, using a Fourier analysis, one finds the coefficients of a Fourier transform as ¢q,,, =16g / mnmw ®in Eqgs.

(3.3-3.4). Numerical investigation showed that the terms m and n did not need to exceed fifty for convergence of the results.
Dimensionless transverse displacement, moment and force resultants

w =10 E h*w/ q,a?

M =10°M, / ga”

N =10>N, / ga’
Where i=a, f3, at the center of the shells are calculated based upon both FSDTQ and TSDTZ. Table 4.2 and 4.3 shows
dimensionless displacement and force and moment resultants at the center of isotropic shells with different thickness ratios a/h
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= 10, and 20 has been calculated for two-ply unsymmetrical [90/0] shells and three-ply symmetric [0/90/0] laminated
orthotropic composite cylindrical shells for fixed thickness ratio (a/h ) and various values of curvature ( a/R) ratios by third
order shear deformation theory. The results obtained by TSDTZ are then compared with earlier available results first order
shear deformation theory by Qatu (FSDTQ), and three dimensional elasticity from finite element method (FEM). This supports
us to evaluate the validity of the present TSDTZ theory.

TABLE 4.2.Comparison of dimensionless displacement and force and moment resultants of 2-ply unsymmetrical
[90/ 0] orthotropic cylindrical shells

a4 =1, K =%, B =25, O =05, O =02, G, =G, v, =025, 9,=20

a
/ Method * * * * *
R w M, M, N; N,

FSDTQ 11.632 52.953 28.801 1086.1 994.64
(Qatu et al., 2010,
2012)

0.5
TSDTZ 11.624 53.055 28.992 1085.2 993.78
(Present theory)
3D 11.612 53.689 29.643 1084.7 990.78
(Qatu et al., 2010,
2012)
FSDTQ 5.6782 31.255 5.5480 1070.5 959.45
(Qatu et al., 2010,
2012)

1
TSDTZ 5.6741 31.341 5.5887 1070.5 959.87
(Present theory)
3D 5.7646 31.638 5.9669 1070.5 957.92
(Qatu et al., 2010,
2012)

TABLE 4.3.Comparison of dimensionless displacement and force and moment resultants of 3-ply
symmetric[0/90 /0] orthotropic cylindrical shells

a
/ Method * * * * *
R W M M, N N
FSDTQ 9.5159 115.57 11.391 224.27 201.89
(Qatu et al., 2010,
2012)
0.5
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TSDTZ 9.5851
(Present theory)

3D 10.661 112.55
(Qatu et al., 2010,
2012)

FSDTQ 7.8589 95.411
(Qatu et al., 2010,
2012)

TSDTZ 7.9409 93.229
(Present theory)

3D 8.6399 91.340
(Qatu et al., 2010,
2012)

5. Conclusion

In this article we derived the mathematical formulation of a
thick shell theory, which is an extension of the most popular
first order deformation theory for shell structures. The present
approximation of third order shear deformation theory
Zannon (TSDTZ) by for simply supported cross-ply thick
shell is developed using Fourier series expansion. Also,
developed a simplified three dimension to two dimensional
theories with a third order shear deformation theory for shells.
In a forthcoming article we will use this solution to evaluate
the results for free vibration analysis of the cross-ply thick
shells and will assess the accuracy obtained from the
numerical computation using the proposed theory.
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